A UNIFIED MODEL FOR INTER- AND
INTRA-PROCESSOR CONCURRENCY

a thesis submitted to
The University of Kent
in the subject of computer science
for the degree

of doctor of philosophy.

By
Mario Schweigler
August 2006

Abstract

Although concurrency is generally perceived to be a "hard' sjdut, it can in fact be
very simple | provided that the underlying model is simple. The occamp parallel
processing language provides such a simple yet powerful coneaay model that is
based on CSP and the-calculus. This thesis presents any, the occamp Network
Environment. occamp and pony provide a new, unied, concurrency model that
bridges inter- and intra-processor concurrency. This enalsi¢he development of dis-
tributed applications in a transparent, dynamic and highly salable way. The author
speci ed the layout of the pony system as presented in this thesis, and carried out
about 90% of the implementation.

This thesis is structured into three main parts, as well as an inbduction and an
appendix. In the introduction, the need for a uni ed concurency model is examined
in detail. Thereupon, the pony environment is presented as a solution that provides
such a uni ed model. The rst part of this thesis is concerned wh the usage of the
pony environment for the development of distributed applicabns. It presents the
interface between pny and the user-level code, as well apy's con guration and a
sample application. The second part presents the design and irapientation of the
pony environment. It explains the internal structure of pny, the implementation of
pony's components and public processes, and the integration obry in the KRoC
compiler. The third part evaluates pny's performance and contains the nal conclu-
sions. It presents a number of performance tests and concludeshwa discussion of

the work presented in this thesis, along with an outline of possilfuture research.

Contents

Abstract

List of Figures

List of Tables

List of Algorithms

Acknowledgements

Dedication

1 Introduction

Xii

Xiii

XV

Xvii

1.1 Problem and Motivation

1.2 The Need for a Unied Concurrency Model

1.3 Aspectsof Transparency v i i v i i

1.3.1 Semantic Transparency« v v v v i

1.3.2 Pragmatic Transparency« v v v v ..

1.4 History.

1.5 Newoccamp Features Relevantforpny
151 MobileData.

1.5.2 Extended Rendezvous

1.5.3 Mobile Channel-types

1.5.4 Forking

1.6

1.7

1.8

155 Shared Plain Channels
1.5.6 Variables of Any Channel-type and Type-descriptors

1.5.7 Theoccamp Cinterface
Related Developments,
1.6.1 Static Approaches.
1.6.2 Other CSP-based Platforms
1.6.3 Channel Mobility inlcarus
1.6.4 Other Languages Based on thgcalculus
Other Approaches for Distributed Application Development
1.71 The Grid
1.7.2 CORBA e
1.7.3 DSM/Tuple Spaces
1.7.4 PVMIMPI.
1.75 Javalsolates.
1.7.6 Singularity

Thesis Structure s

| Using p ony

2 Getting Started

2.1

2.2

Architecture and Terminology
2.1.1 Applicatonsand Nodes
2.1.2 Network-channel-types
2.1.3 The Application Name Server
2.1.4 Network-types e
2.1.5 \Variants of Channel-types and Their Graphical Represttion

RunningpnyonaNode
2.2.1 pony-enabledoccamp Programs

222 Themnylibrary

15
15
16
16
17
18
18
19
19
19
20
20
21
21
22

24

27

2.2.3 Public ppny Processes and Handles 30

2.3 The Startup Mechanism 31
2.3.1 Dierent Versions of the Startup Process B
2.3.2 Parameters of the Startup Processes 32
233 DesignRules 35
2.4 Startingthe ANS e 36
3 Operation of p ony Nodes 37
3.1 Allocating NCT-ends, 37
3.1.1 Explicit Allocation 37
3.1.2 Usage of NCTs and Implicit Allocation 40
3.2 ShuttingDown Nodes. 41
3.3 Conguration 43
3.3.1 TheNode-le 44
332 The ANS-le e 45
3.3.3 The ANS-conguration-le 46
4 Error-handling and Message-handling 48
4.1 Error-handling 48
4.1.1 Non-transparent Error-handling 48
4.1.2 mny's Error-handling Mechanism 49
4.1.3 Getting Information About NCTs and Remote Nodes 51
4.1.4 Getting and Deleting Error-points 54
4.1.5 Getting Errors That Happened After a Given Error-point.. . 55
4.1.6 Shutting Down the Error-handler 56
4.2 Message-handling, 56
5 A Sample Application 59

Il Design and Implementation of p ony 66

6 Structure of p ony 67
6.1 NCTsand CTBSs it 67
6.2 Internal Componentsofpny 68

6.2.1 The Individual Components 70
6.2.2 Modular Designofpny 73
6.3 CTBs in pony-enabled Programs 74
6.3.1 The Pointer to the Type-descriptor 75
6.3.2 The Claim/Release Mechanism 77
6.3.3 Shutting Down ny-enabled CTBs 81
6.4 The Mainpony Kernel 84
6.4.1 Layoutand Startup 84
6.4.2 Explicit Allocation of NCT-ends 84

7 Protocol-conversion 90
7.1 The Protocol-converters ®
7.2 Levels of Communication o 91
7.3 Implementation of the Protocol-converters 93
7.4 Cancelling Started ULCs 94
7.5 The Protocol-decoder, 95
7.6 The Protocol-encoder 99
7.7 Decoding and Encoding the Variousccamp Protocols 102

7.71 Data-itemNLCs 104
7.7.2 Channel-type-end NLCs 112
7.8 Decode-handler and Encode-handler. 120
7.8.1 Dierences Compared With the Protocol-converters 120
7.8.2 CLC-Packets 122

Vi

8 Handlers and Managers for CTBs and NCTs

9

81 TheCTB-handler

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.2 The CTB-manager

The Instant-handler

Client-listener and Server-listener

8.4 The NCT-manager

The Network Drivers

9.1 The TCP/IP Link-handler

9.2 The TCP/IP Link-manager
9.3 Optimising TCP/IP Network Performance

10 Other Implementation Issues

10.1 Implementation of Error-handling
10.2 Implementation of Message-handling
10.3 The Application Name Server
10.4 The Startup Mechanism
10.5 The Shutdown Mechanism

Performance of p ony, Evaluation and Conclusions

11 Performance Evaluation

11.1 Basic Considerations

11.2 Communication Time,

11.3 Throughput

Vii

Sessions for NCTs.

Startinga Sessiono

Handling Sessions

Sending an NCT-end Over ltself

8.3 The NCT-handler

11.4 Network Overhead 174

115 CPUOverhead 175
11.6 Application Scalability, 179
11.7 Distributed Robust Annealing Case Study a1
12 Conclusions and Future Work 188
12.1 Evaluation of What Has Been Achieved 8B
12.2 Adding Support for New/Future occamp Features 191
12.2.1 Supporting Mobile Processes 191
12.2.2 Supporting Mobile Barriers 13
12.2.3 Supporting RMX L 192
12.2.4 Supporting Buered Channels 3
12.2.5 Supporting Behaviour Patterns a3
12.2.6 Supporting the ProposedGATE HOLEMechanism 193
12.2.7 Supporting New Fault Tolerance Mechanisms 91
12.3 Other Things 197
12.3.1 Adding Support for Networked Plain Channels 197
12.3.2 Adding Support for LOCALHigh Performance Channels . .. 198
12.3.3 Supporting Di erent Architectures 200
12.3.4 Security and Reliability 20
12.3.5 Simplifyingthe Setup 201
Bibliography 203
IV Appendices 214
A Abbreviations and Acronyms 215
B The Public p ony Interface 216
B.1 Public pony Processes 216

viii

B.1.1 Startup Processes 217
B.1.2 Allocation Processes 237
B.1.3 The Shutdown Process 241
B.1.4 Error-handling Processes 242
B.1.5 The Message-outputters 251
B.2 Public pony Data-types and Constants 259
B.2.1 TheErrorRecord 259
B.2.2 Message-types 260
B.2.3 Network-types 260
B.2.4 Node-types 260
B.25 Share-types 260
B.2.6 Results for Startup Processes 261
B.2.7 Results for Allocation Processes 262
B.2.8 Results for Error-handling Processes 26
B.2.9 Error-codesfor TCP/IP 264
C Dierent = commstimélmplementations 265
C.1 The Traditional ‘commstimélmplementation 265
C.2 The Distributed ‘commstimélmplementation 266
C.2.1 The Channel-type Declaration X
C.22 Theprefix "Node 266
C.23 Thedelta'Node 267
C.24 Thesucc'Node 268
C.25 The consuméNode 269
D Own Publications 270

List of Figures

2.1 Channel-type variants,
5.1 Sample application: Possible dynamic layout
6.1 Layout of the pony environment
7.1 pony components related to protocol-conversion
8.1 pony components related to CTBs and NCTs
9.1 pony's network drivers L

10.1 The error-handler

10.2 pony components related to message-handling

11.1 The commstimébenchmark
11.2 Throughput: 100 KB messages, two workers per slave
11.3 Throughput: Varying message size, one slave with 50 workers. . .
11.4 Throughput: 50 KB messages, one slave, varying number of kens .
11.5 CPU overhead: Single byte array of varying size
11.6 CPU overhead: Sequential protocol, 1 B arrays

11.7 CPU overhead: Sequential protocol, several array sizes.
11.8 The mandelbauer application: Shared mode
11.9 The mandelbauer application: Multiplexing mode
11.10Scalability of a distributed application

11.11Annealing:occamp VErSIONS v i

11.12Annealing: Single machine versions

11.13Annealing: Distributed versions

Xi

List of Tables

6.1 Memory layout of CTBs in a pny-enabled KRoC build

7.1 Layout of the rst byte of an NLC-descriptor

Xii

List of Algorithms

3.1

4.1

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3

Typical structure of apony node 42
An error-handlingexample 50
Sample application: Declarations 61
Sample application: The broker 62
Sample application: Theworker 63
Sample application: The customer. 64
Claiming/releasing ends of ag@ny-enabled CTB 80
Making a CTB networked when necessary 81
Reference-count check for aopy-enabled CTB. 81
Shutdown of a networked CTB 83
Pseudo output guard mechanism used in the protocol-decoder. . . 97
Counterpart to pseudo output guard in the decode-handler 98
Implementation of "cancel-encode’ operation in the deder 100
Initiating “cancel-encode' operation in the CTB-handr 101
Several examples of decoding counted arrays 109
Making a CTB networked | detailed description 113
Initiating the closing of asession B3
Reacting to a ‘close-session'message 136
Initiating the suspension of asession 139

Xiii

8.4 Reacting to a ‘suspend-session'message

10.1 Deleting an error-point 156

Xiv

Acknowledgements

The work on this PhD thesis was carried out on a full-time basisiithe Computing
Laboratory at the University of Kent, largely funded by a Brian Spratt Bursary from
the Computing Laboratory.

| would patrticularly like to thank my supervisor Professor PetetWelch for his
guidance and support over the course of my PhD. Hisccamlectures during my
Masters degree inspired me for this great parallel processingdmage, and CSP-style
concurrency in general. This was why | decided to develop atmerk environment
for occamfor my MSc dissertation, and why | continued the project for my RD.
Many thanks also go to the members of my Supervisory Panel, DavWood and
Gerald Tripp, for their advice and help, and to the ComputingLaboratory as a
whole for funding my research and providing o ce space and equinent. Thanks
also to EPSRC for funding the TUNA project, whose high performarmcluster was
used to run the performance tests presented in this thesis.

| would also like to thank the Concurrency Research Group at th€omputing
Laboratory for creating an excellent academic environmentOver the years, a lot
of research was done in the Concurrency Group, much of whichoprded valuable
stimuli for my work. In particular, many new features were inorporated in the
occamlanguage, which has now grown intaccamp. This involved many discus-
sions in the research group that also positively in uenced thegay project. | would
particularly like to acknowledge Fred Barnes for his advicen the KRoC compiler

and for implementing the compiler support and various auxiiry functions for pony,

XV

as well as Adam Sampson for implementingopy's protocol-converters and various
benchmarks/demos.

Acknowledgements also go to the WITUG community, whose annual CPA con-
ferences have been a great forum for exchanging ideas and ussing research results
and future plans. Many WoTUG members provided valuable feedback for my re-
search. Particularly, | would like to thank Dyke Stiles for peting his Distributed
Robust Annealing package tamccamp/p ony and running a series of tests, the results
of which are presented in this thesis.

Finally, | would like to thank my family and friends for their support during my
PhD, especially my wife Karin for enduring the long separatiomwhile | was away in

England.

XVi

Dedication

To my wife Karin.

XVii

Chapter 1

Introduction

This thesis is concerned with a new, uni ed, concurrency mobéat bridges inter-
and intra-processor concurrency. The need for such a uni ed meldis examined in
detail. Thereupon, pny?*, the occamp Network Environment, is presented as a solu-
tion that provides such a uni ed model. This thesis presents thpony environment,
both in usage and implementation, and evaluates the achievemts to date. The
author speci ed the layout of the pny system as presented in this thesis, and carried

out about 90% of the implementation.

1.1 Problem and Motivation

Historically, computing has been sequential. This has severaasons, which may
probably be best summed up in a single word: tradition. For decad, the von
Neumann architecture [VN93] has moulded our view on what a comer is and how
a computer works. The basic paradigm has always been the sequanéxecution of
instructions, and, despite the fact that modern processors haveaved enormously

from the rst von Neumann based designs, this notion remains viriaily unchanged.

1The name “pny' is an anagram of the rst letters of [ojccam [p]i and [n]etwork; plus a [y] to
make it a word that is easy to remember.

CHAPTER 1. INTRODUCTION 2

The idea of step-by-step execution being the somehow "naturalay of computing is
still “hard-wired' in the collective mind of the computer sciace community.

Concurrency has traditionally been seen as an "advanced' sett It is taught
late (if at all) in computer science curricula, because it is sea@s a non-trivial exten-
sion of the "basic' sequential computing. In a way, this is surming, since the real
world around us is highly concurrent. It consists of entitieshtat are communicating
with each other; entities that have their own internal livesand that are exchanging
information between each other.

Process calculi such as CSP [Hoa85], with their notion of processad channels,
are particularly suited to model the real world. Processes carelused to model real-
world entities, since they are self-contained and have their owinternal behaviour
and clearly de ned interface. Processes may be encapsulatetbieach other, just
like real-world entities. Channels are the means of exchangiinformation between
processes. They provide a clear interface between processesauthhidden' routes.
The p-calculus [Mil99] additionally gives us the notion of mobily. It allows us
to communicate processes and channels over other channels, cwhénhances the
exibility of the modelled systems.

There is a programming language available that is based on @ formal calculi,
but is still easy to understand and to use. This language @sccamp, the new dynamic
version of the classicabccan? [Inm95]. Originally targeted at transputer [INnm88]
platforms, it was speci cally designed for the e cient executon of ne-grained, highly
concurrent programs. Still, most people associate concurrenagth the traditional
approach of threads, locks and semaphores rather than with tlmuch more intuitive
one of a process algebra.

Networking is increasingly important in today's world. Orighally a merely aca-

demic topic, it has gained signi cant importance since the 198, especially due to

2occamis a trademark of ST Microelectronics. The original occamlanguage was based on CSP
only; dynamic features from the p-calculus, particularly the notion of channel and process mobility,
have been incorporated inoccamp recently.

CHAPTER 1. INTRODUCTION 3

the advent of the internet as an everyday ‘commodity’ on theomsumer market.
The development of large distributed applications is one ohe modern challenges
in computer science. Infrastructures such as the Grid [FKT02, KTO1, FKNTO02]
are speci cally designed for the distribution of large comput#onal tasks onto decen-
tralised resources.

Distributed applications are typically designedto be distributed right from the
start | the mechanisms used for distribution must be speci cally addressed by the
developer. The work within this thesis is targeted towards lmging concurrency and
networking together in atransparentand dynamic yet e cient way, using the occamp
language as the basis for the development of distributed apgditions. This is possible
because, as stated above, the world is concurrent by nature, isth includes networks
of computers. A programming language such asccamp, which by design captures
this "natural’ concurrency, is particularly suited as the bais for a uni ed concurrency

model.

1.2 The Need for a Uni ed Concurrency Model

Concurrency is simple | provided that the underlying model is simple. occamp
o ers just that, a concurrency model that is simple to use, yet bsed on the formal
algebras of CSP and th@-calculus. One of the major advantages afccamp is that it
encourages component-based programming. Easbcamp process is such a compo-
nent, which can communicate with other componentsoccamp applications may be
highly structured, since a group of processes running in pardllean be encapsulated
into a "higher level'occamp process, and so on.

This component-based approach is the particular charm ottcamp programming.
It allows the development of sub-components independentlyoin each other, as long
as the interface for communication between those sub-compoi®is clearly de ned.

In occamp, this interface is provided (primarily) by channels; this irtludes both the

CHAPTER 1. INTRODUCTION 4

“classical'occamchannels and the new dynamic channel-typg§BWO02]. Once all
components of anoccamp application have been developed, they just need to be
“plugged together' via their interfaces.

We want to utilise the advantages ofoccamp's concurrency model for the devel-
opment of distributed applications. In order to do this successdlly, it is necessary
to extend occamp in such a way that the distribution of components is transparent
to the components' developers. As long as the interface betweeomponents (i.e.
processes) is clearly de ned, the programmer should not need tstthguish whether
the process on the “other side' of the interface is located onetlisame computer or on

the other end of the globe.

1.3 Aspects of Transparency

pony, the occamp Network Environment, extendsoccamp in such a transparent way.
There are two aspects of transparency that are importantsemantictransparency and

pragmatic transparency.

1.3.1 Semantic Transparency

occamwas originally developed to be executed on transputers. Theatnsputer was a
microprocessor with a built-in micro-coded scheduler, allong the parallel execution
of occamprocessesoccamchannels were either emulated within a single transputer
if their ends were held by processes on the same transputer ('sdfaenels’), or im-
plemented using the transputer's links. Each transputer had fauinks by which it
could be connected to other transputers ("hard channels'’). Bilate T9000 transputer
[Inm93], which was the last transputer being developed and wiii went out of pro-

duction shortly after having been introduced by Inmos, additnally o ered a Virtual

3Channel-types are bundles of channels. The ends of channel-types are mobile and may be
communicated between processes.

CHAPTER 1. INTRODUCTION 5

Channel Processor (VCP)[MTW93] which allowed many logicaloccamchannels to
be multiplexed over the same physical link.

This approach allowed the simple construction of networks ofdnsputers o ering
large computing power, despite the (comparatively) low prassing capabilities of a
single transputer. The great advantage of this approach was ahthe programmer
of an occamprocess did not have to care whether a speci ¢ channel was a saftao
hard channel. This distinction was transparent from the proggmmer’s point of view
| the semantics of channel communication was identical for dl occamchannels.

After the decline of the transputer, the occamFor All' [P0096] project successfully
saved theoccamlanguage from early retirement. Althoughoccamwas originally
targeted at transputers, the aim was to bring the bene ts of itgpowerful concurrency
model to a wide range of other platforms. This was achieved byedeloping KRoC,
the Kent Retargetableoccam Compiler [WW96]. KRoC essentially consists of two
parts. The front-end compilesoccamcode into Extended Transputer Code (ETC)
[Po098], which is an extension of the original transputer bytede.

The back-end of KRoC is atranslator that translates ETC into the native code of
the target platform, and links it with a runtime kernel that p rovides a transputer-style
scheduler. This allows the execution of an entireccamprogram in a single OS-level
process, without the need to involve OS-level thread schedudin Therefore,occam
programs compiled with KRoC are highly e cient, o ering context-switch times in
the range of nanoseconds. In this way, a K& program, together with the linked-in
runtime kernel, provides the same functionality as amccamprogram running on a
single transputer; the runtime kernel emulating the transputes support for process
scheduling and soft channels. What had been lost, however, wag tbupport for hard
channels, since without transputers there were no transputemks anymore.

The pony environment re-creates the notion of semantic transpareypdrom the
old transputer days. pny enables the easy distribution of aroccamp application
across several processors | or back to a single processor | without tle need to

change the application's components.

CHAPTER 1. INTRODUCTION 6

With the constant development of KRoC, occamhas been developed intoccamp,
which o ers many new, dynamic, features [BW01, BWO02, BarO3]pony takes into
account and exploits this development. In the classicadccamof the transputer
days, channels were the basic communication primitive, and santic transparency
existed between soft and hard channels. opy's basic communication primitive
are occamp's new channel-types, and there is semantic transparency betwmenon-
networked channel-types andetwork-channel-types (NCTSs) This transparency in-
cludes the new dynamic features afccamp.

All occamp PROTOCOtan be communicated over NCTs. Mobile semantics (cf.
Section 1.5.1) are preserved as well, both when mobile dataWyB1] is communi-
cated over NCTs, and when ends of (networked or non-networkedhannel-types
are communicated over other channel-types. The semantics isvays the same, and
the developer of anoccamp process does not have to care whether a given channel-
type is networked or not. Some of pgny's general routing mechanisms are similar to
the Virtual Channel Processor of the T9000 transputer; howeverputing in pony is

dynamic, rather than static as on the transputer.

1.3.2 Pragmatic Transparency

When achieving semantic transparency, we do not want to pay for with bad per-
formance. For instance, a system that uses sockets for every singtenmunication,
including local communication, would still be semantically tansparent | since the
developer would not have to distinguish between networked amn-networked com-
munication | but it would be hugely ine cient. Here the other i mportant aspect
becomes relevant, namely pragmatic transparency. This essally means that the
infrastructure that is needed for network communication is $eup automatically by
the pony environment when necessary. Due togny's dynamic routing, it is used if

and only if needed.

CHAPTER 1. INTRODUCTION 7

Local communication over channel-types is implemented inhé traditional
occamp way, involving access to the channel-word only. In this wayht pony en-
vironment preserves one of the key advantages eécamp and KRoC, namely high
performance and lightweight, ne-grained concurrency. Ag when the two ends of
an NCT are not located on the same node of a distributed applicath, communica-
tion between them goes through the infrastructure providedybpony. But also for
this case, high performance was one of the key aspects durinmnys development;
the network communication mechanisms in @gny are speci cally designed to reduce
network latency.

This pragmatic transparency approach, together with a simplsetup and con g-
uration mechanism, makes the gny environment very dynamic and highly scalable.
The topology of a distributed application written in occamp and pony is constructed
at runtime and can be altered by adding or removing nodes whereeded or when

they become available.

1.4 History

The development of pny and its predecessors has gone through a number of stages.
Originally, it started as an undergraduate student project irR001 [Goo01]. In autumn
2001, the rst major version was released as part of an MSc dissdrtm under the
name Distributed occamProtocol' [SchO1]. This version was implemented fully in
occamand o ered a certain degree of transparency. Due to the limiteons of the
occamlanguage at that time, it was far from being fully semanticall transparent,
however.

Since then, the ny project has continued as part of this PhD thesis work
[SBWO03, Sch04]. During this time, theoccamlanguage was extended signi cantR;

adding many dynamic features, some of which are discussed in Sactll.5. This

4partly under the provisional name "KRoC.net'
5and renamed to bccamp'

CHAPTER 1. INTRODUCTION 8

a ected the pony project two-fold. Firstly, the new dynamic features inoccamp
enabled the pny environment to be implemented in a semantically and pragntia
cally transparent way; being implemented almost entirely iroccamp, with a small
part implemented in C, as well as some compiler-level supporuitt-in directly in
KRoC. Secondly, features such as the new dynamic channel-typesr& themselves
incorporated in the pony environment. As the development obccamp progresses in
the future, the pony environment will also have to be extended to accommodate sup
port for new developments; foremost for mobile processes [BW@#H mobile barriers
[WBO05].

Another ongoing project is RMbX, the occamoperating system [BJVO03]. Inte-
grating the pony environment into RMoX will be another important aspect of the
future development of mny. Since RMoX is implemented in occam an RMoX-
integrated pony environment would be able to utilise RMX's native network drivers
directly rather than going through an underlying operatingsystem. This could fur-
ther enhance network performance compared to versions amfcamp and pony that

are running on top of an "ordinary' OS.

1.5 New occam-Features Relevant for pony

This section contains a (very condensed) overview of some recextensions to
occamp that are relevant to pony in one way or another. For a comprehensive

reference, the reader is referred to the K& homepage [WMBWO6].

1.5.1 Mobile Data

Mobile data-items di er from traditional static occamdata-items in their semantics
of assignment and communication. While static data isopiedwhen it is assigned to

another variable or communicated via a channel, mobile data moved This means

CHAPTER 1. INTRODUCTION 9

that after the assignment or communication, the variable thatheld the data-item
before is nowunde ned.

If we need an actual copy of a mobile data-item, we caroneit, and then continue
using the clone. The original variable will remain de ned andunchanged, and the
clone will contain the same data as the original variable at # time of the cloning.
If we change the value of the original variable or of the cloriater, the other variable
will not be a ected by this. That is, neither moving nor cloningintroduce aliasing.

When mobile data-items are communicated across the networkavthe pony in-
frastructure, they are physically copied but retain their moldle semantics, i.e. the
source variable is unde ned after the communication. This b®viour guarantees
semantic transparency.

A special subgroup of mobiles are dynamic mobile arrays. Thesesanobile as
de ned above, and dier from ordinary occamp arrays insofar as their size is not
known at compile-time and they are allocated dynamically atuntime.

The key advantage of mobile data is that large data-items thaake up a lot of
memory do not need to be copied anymore. This saves resourced ime. But also
apart from this, there are applications where mobile data oes a "natural' way of
modelling certain scenarios. For instance, if a data structure odels the access to
a particular resource which only one process is allowed to use atime, it makes
sense to implement this data structure as a mobile | which gives 8 this property

by de nition.

1.5.2 Extended Rendezvous

The extended rendezvous allows to “intercept' anccamp channel communication.
Contrary to normal input operations, the process writing to tle channel is not released
from the write operation until explicitly specied by the inputting process. This

allows for instance to read from a channel, perform some opdmt on the data that

CHAPTER 1. INTRODUCTION 10

was input, pass the data on to another process, wait for the oth@rocess to take the
data, and only then to release the original writing process.

The key point is that for the original writer, the handshake serantics between
itself and the nal reader is preserved even though a process ihet middle has in-
tercepted the data. This allows to add further processes to arpglication without
changing the semantics of the existing processes.

The syntax for the extended rendezvous is as follofvs

chan ?? x -- Extended input from channel ‘chan' into X'
Stuff to be done while writing process remains suspended

Stuff to be done after writing process has been released

The rst indented process is called theduring-process the second one is called the
after-process The latter may be omitted, in which case it is treated like SKIP.
The during-process may not use the "extended' channel sincesttwould result in
deadlock. The after-process is intended for situations whettee extended rendezvous
is used in an ALT or "CASEnNput. For stand-alone extended rendezvous inputs, the
after-process is meaningless, since it may be done just as welkegnfthe extended
rendezvous has nished.

pony uses the extended rendezvous mechanism to “stretch’ comnuations over
the network while preserving the original handshake semanti¢cetween sender and
receiver, giving us semantic transparency. This means thateir codings do not need
to be changed. Application processes do not need to detect anckeaaccount of

whether the external channels they are using are networked.

1.5.3 Mobile Channel-types

As already discussed in the above sections, channel-types are nebundles of chan-

nels. They have two ends, called “client-end' and “server-eridt convenience. These

SLines starting with ... ' denote parts of the code that have beerfolded This notation, which
is used by origami and other folding editors, will be used throughout this thesis.

CHAPTER 1. INTRODUCTION 11

names are merely distinctions, however; channel-types may bged for any topology
necessary, not just for client/server architectures.
A channel-type may contain many channels of di erent protoals and of di erent

directions. They are declared from the server-end point of wie

CHAN TYPE FOO
MOBILE RECORD
CHAN INT reqg?:
CHAN INT reply!:

In the above example, the server-end of the channel-typeOOholds the reading-end
of the request channel and the writing-end of the reply chanheThe client-end of
"FOOholds exactly the opposite ends of the channels.

Channel-types are allocated in pairs of one server-end andeotlient-end variable.
Either or both of these variables may be shared. The followingc@mple allocates a

"FOOchannel-type with a shared client-end and an unshared servend:

SHARED FOOQ! foo.cli: -- Shared client-end
FOO? foo.svr: -- Unshared server-end
SEQ

foo.cli, foo.svr := MOBILE FOO

Use ‘foo.cli" and “foo.svr'

Shared channel-type-ends must be claimed before they can lsed for communication
over their channels. When a shared end is assigned to another shite, or sent over a
channel, it gets auto-cloned, and then the clone is assignedpecommunicated. Since
internally, channel-type-end variables are pointers to a amory structure that holds
the channel-type, the clone is just another pointer to the sammemory structure (i.e.
to the same channel-type). In this way, after the assignment olocmmunication, both

the original variable and the target variable will logicaly contain the shared end. This

CHAPTER 1. INTRODUCTION 12

introduces aliasing, but it isexplicitly declared and controlled by language structures
and rules. In particular, as mentioned above, a shared end muse lzlaimed before
it can be used. When an unshared end is assigned or communicatdug briginal
variable will be unde ned afterwards | as usual for mobile variables.

The mobility of channel-type-ends has the same advantagesthe mobility of data
discussed in Section 1.5.1. In particular, it allows to model thaccess to resources
that are "mobile’ in the real world too.

The channels within the channel-type would be used in the follving way:

-- Process using shared client-end

INT n:
SEQ
CLAIM foo.cli
SEQ
foo.clifreq] ! 47
foo.clifreply] ? n
Use n'

-- Process using unshared server-end
INT n:
SEQ

foo.svr[req] ? n

foo.svrfreply] ! n * 5

Channel-types provide the basic communication paradigm fathe pony environ-
ment. As discussed above, the network-channel-types that are ptemented by the
pony infrastructure are semantically and pragmatically transpeent to occamp's non-

networked channel-types.

CHAPTER 1. INTRODUCTION 13

1.5.4 Forking

In classicaloccam processes could only be started by calling them directly. Theiore,
the topology of anoccamnetwork of processes was determined at compile-time and
could not be altered.occamp o ers the possibility to fork o processes dynamically
at runtime when needed. This approach is similar to the welldown mechanisms of
forking o OS-level processes, for instance in Unix-derived systamalthough syntax

and handling are much simpler inoccamp:
FORK proc (...)

This example forks o the processproc' and then continues in parallel with it. It is

also possible to include forking calls in a special forking block

FORKING
SEQ
Do stuff
FORK proc (...)
Do other stuff

The FORKINGIlock will not terminate until all processes that have been fdked o
within the forking block have terminated themselves | similarly to a normal 'PAR
construct.

Note that forking can always be replaced byPARconstructs. In case of aFORK
in a loop, the replacementPARconstruct would need to be recursive. For instance,

the following example:

WHILE TRUE
SEQ
Acquire “chan.type.svr'

FORK worker (..., chan.type.svr, ...)

CHAPTER 1. INTRODUCTION 14

could be replaced by

REC PROC rec.proc (...)
SEQ
Acquire “chan.type.svr'
PAR
worker (..., chan.type.svr, ...)

rec.proc (...)

rec.proc (...)

However, using PARconstructs instead of forks may make the code signi cantly mer
complex and add extra overheads. Especially in an in nite logghe resources taken
by the recursively entered PARconstructs are never freed, whereas a forked process
simply terminates.

The support for forking in occamp allowed pony to be implemented in a prag-
matically transparent way. Sub-components of gny are only started when they are

needed { which may be never, depending on the needs of the peutar application.

1.5.5 Shared Plain Channels

There is now support for declaring shared "plaidccamp channels as in the following

example:

PROC output.something (SHARED CHAN BYTE out!)
CLAIM out!

Use “out!" for output

CHAPTER 1. INTRODUCTION 15

PROC example (CHAN BYTE key?, SHARED CHAN BYTE scr!, CHABIBYT
SEQ
FORK output.something (scr!)
FORK output.something (scr!)

Shared plain channels are implemented by the compiler as aiymous channel-types
with only one channel inside. pny supports shared plain channels for instance in its

message-handling mechanism.

1.5.6 Variables of Any Channel-type and Type-descriptors

occamp o ers a new special type calledMOBILE.CHANariables of that type can
hold any channel-type. pny uses this feature for its allocation processes. These
processes take variables of any given channel-type as paraemstand allocate them
as ends of NCTs.

In order to do this, another recent feature obccamp is exploited, namely type-
descriptors for channel-types. These are generated automaliy for every channel-
type de ned in an occamp program, and describe the structure and protocols within
that channel-type. For MOBILE.CHAPNarameters, KRoC adds another, hidden, pa-
rameter that points to the type-descriptor of the argument. Usig this approach,
pony's allocation processes can allocate any given channel-¢/pnd variable, even
though the parameters of the allocation processes are of tyddOBILE.CHARNvith

the actual type being unknown at compile-time).

1.5.7 The occanp C interface

The C interface (CIF) [Bar05] allows processes written in C toun in parallel with
occamp processes and communicate with them. Calling external C prases from
occamis a fairly old feature. However, the callingpccamprocess always had to wait

for the C process to terminate before it could continue itseliWhat is new about the

CHAPTER 1. INTRODUCTION 16

C interface is that nowoccamp and C processes can run in parallel (which includes
support for forking o C processes) and communicate with each ogh.

pony uses theoccamp C interface for its protocol-converters (cf. Section 7.1).
These are implemented in C and interact with the rest of the systemia the mecha-

nisms provided by the C interface.

1.6 Related Developments

1.6.1 Static Approaches

In the old transputer days, there was semantic transparency beéen hard and soft
channels. Sinceoccamitself was a purely static language, also the layout of process
networks had to be determined statically at con guration tine, using the PLACED
PARmMechanism.

There have been projects to target multi-processor platformsther than trans-
puters. An example is Vella's work on portingopccamto Networks of Workstations
(NoWs) [Vel98, VW99] which uses an interface to communicate witthe network,
called ocnet. This interface is a layer between the@ccamkernel on the one hand, and
the operating system and the networking hardware on the otherlLike the original
networks of transputers, this system was static and the layout ohte network had to
be con gured in advance.

Another example is MESH [BDv99], which is completely hardwardependent.
MESH is a messaging and scheduling system that enables access twort hardware
(e.g. ethernet cards) and provides user-level scheduling imbuix. The original version
of CCSP [Mo0099], on which the currenbccamp kernel is based, could access the
messaging capabilities of MESH. But again, this was hardwareeplendent and static.

Lately, Barnes' "Application Link Layer' [Bar05] was developd. This is essentially
a static core version of the protocol-converters used iropy, which are described in

Chapter 7 of this thesis.

CHAPTER 1. INTRODUCTION 17

1.6.2 Other CSP-based Platforms

There are other platforms based on CSP, in particular JCSRQSP for Javg [Wel99]
and C++CSP (CSP for C++) [BWO03]. These are libraries on top of their host

languages that o er occamstyle concurrency mechanisms. This includes:

processes, channels
networks of processes
read, write, ALT constructs

channels with shared ends (similar to the shared channel-tymsds inoccamp,
cf. Section 1.5.3)

It is possible to move channel-ends and processes over channgiscé they are ob-
jects), similar to the new mobility features inoccamp. Everything is "naturally'
mobile, since it is object references that are passed around. Hwer, this incurs
the risk of aliasing, whereas mobility inoccamp is explicitly aliasing-free (cf. Sec-
tion 1.5.1).

The JCSP Network Edition (JCSP.net) [WAF02, WV02] is the network extension
of JCSP. Some of the concepts ingmy and JCSP.net are similar. JCSP.net allows the
stretching of channels over a networking fabric (e.g. TCP/IP and the dynamic cre-
ation of distributed networks of processes. The basic paradigmeanetwork-channels
rather than NCTs as in pony. JCSP.net uses a Channel Name Server which allows
processes to nd network-channels by a pre-de ned nameopy uses a similar concept
with its Application Name Server; see below.

JCSP.net is not fully transparent, however. When a Java objéés communicated
over a JCSP channel locally, its object reference is commuaated, which introduces
aliasing. Across the network, objects are serialised and copiethem they are com-
municated over JCSP.net channels. This gives us di erent semics locally and

networked. Also the semantics of channel-ends is not fully traparent in JCSP.net.

CHAPTER 1. INTRODUCTION 18

The reading-end of a JCSP.net channel may be moved across thensanode, but
not in the same way across the network. To move a reading-end otke network,
the user-level code must “lease' the channel from the Channel NauServer, move
an identi er of the channel to the target node, and re-registethe channel with the
Channel Name Server. That is, the user-level code must be awareatlthis is a
“network operation'.

A network environment for C++CSP was also implemented [BroO} This is still
very basic, however, and lacking most of the dynamic feature ICSP.net and ony.
For instance, there is no Channel Name Server such as in JCSP,nehich means that
currently network-channels in C++CSP.net are connected bysing physical network

locations.

1.6.3 Channel Mobility in Icarus

The mobility of ends of network-channel-types was inspiredytthe mobile channels
in Muller and May's Icarus language [MM98]. However, implenméing mobility for

pony's NCT-ends is substantially more complex because it needs ke into account
the special properties of channel-types compared to plainatnels. This includes the
fact that channel-types are bundles of channels, as well asathchannel-type-ends
may be shared and that shared ends must be claimed before they daused. All
these features had to be incorporated into NCTs as well, in ord& achieve semantic

transparency.

1.6.4 Other Languages Based on thealculus

There are other languages that are based on thgecalculus, for instance Pict [PTO0O]
and PiLib [COO03]. The latter is a library written in Scala [OAC* 05], a Java-style
language merging object-oriented and functional programng. Both Pict and PiLib

are closely related to thep-calculus, especially as far as the syntax is concerned.

CHAPTER 1. INTRODUCTION 19

Unlike occamp, whose concurrency features are based on the classical impemati
programming paradigm, Pict and PiLib/Scala are, in princige, functional program-
ming languages. This makes them less intuitive thanccamp, and entails a much
steeper learning curve, especially for programmers who aret used to functional

programming.

1.7 Other Approaches for Distributed Application Devetbpm

There is a vast number of other approaches for developing digited applications,
with a variety of di erent basic distribution primitives. This section gives an overview
of some of the most common architectures and how they relate thet pony/ occamp

approach.

1.7.1 The Grid

The most “traditional' paradigm are remote process or methodalls. The basic dis-
tribution primitive of Grid-based systems, such as the Globus Tdkit [FK97, IBMO03]
or the Minimum intrusion Grid [Vin05], are “jobs'.

There are resource and user nodes | a user node submits a job to beesxited
by some resource node. This approach is speci cally designed t® distributed, and
there is a clear distinction between the farming-out of jobsot remote resources and

the code that is executed locally.

1.7.2 CORBA

The Object Request Broker mechanism of CORBA [Obj93] providesupport for the
distribution of object-oriented applications. CORBA allowsaccess to the methods
of a remote object by providing a “proxy' object that receive method calls and
forwards them to the remote object. Essentially, CORBA also behgs to the RPC

based platforms, just in an OO context.

CHAPTER 1. INTRODUCTION 20

1.7.3 DSM/ Tuple Spaces

Other architectures are built on distributed shared memory otuple spaces, for in-
stance Linda [CG89] and Java PastSet [PV02]. Tuple-spaced systeane semantically
transparent because both local and networked communicatiomeadone via the tuple
paradigm.

Since tuple spaces are built on a distributed shared memory system growing
distributed application can cause pragmatic problems. This ibecause all available
information is stored in the distributed shared memory as a cerdl resource. Keeping
a consistent view of the shared memory is not trivial and gets mercomplex as the

system grows.

1.7.4 PVM/MPI

Another common approach for developing distributed applicains are PVM (Parallel
Virtual Machine) [Sun90] and its de-facto successor MPI (Messagad3ing Interface)
[MPI97], implemented for instance in the popular LAM/MPI library [Ind04]. As in
occamp and pony, message passing is the basic paradigm here.

Contrary to pony, however, a distributed application using an MPI implemerd-
tion would not be fully transparent in the way described earlie Either the semantic
transparency is missing | because local communicatiohis typically not done through
the message passing mechanisms provided by the MPI library | or thgoragmatic
transparency is missing. Of course, a program which uses MPI's tiions for every
single communication is imaginable, but the overheads woulzk signi cant so that

such a program would not meet our criteria of pragmatic transpancy.

"provided that the host language is also concurrent and based on message passinghartvise it
would not be semantically transparent anyway

CHAPTER 1. INTRODUCTION 21

1.7.5 Java Isolates

A recent Java related development are Java Isolates [SunO5The Java Isolation
API allows to run several Java programs, each with its own main ntieod, in the
same JVM. Each of these programs is run in an ‘isolate' that prows the same
level of protection as if the programs were run in separate JVMsThis approach
increases performance and scalability without losing securitCompared tooccamp's
concurrency model, concurrency in Java Isolates is coarsexiged only.

Part of the speci cation is the possibility to communicate betveen isolates via
‘links'. If we draw a connection to a process algebra, isolatesutd be seen as processes
whereas links have a certain resemblance with channels. Comipg Java Isolates
links to occamp channels, however, shows that link mobility is much more restted
than in the p-calculus. In particular, a link is permanently bound to the wo isolates
(at each end) with which it is initiated. Also, spawning links béween di erent JVMs
in a transparent way (which would be inevitable for a transpanat distribution model
such as pny's) is not part of the Java Isolates speci cation.

Ultimately, the basic idea behind Java Isolates is not distribubn but security
and e cient memory protection within a single JVM (compared with the memory

protection in separate JVMs) | something already present foroccamp processes.

1.7.6 Singularity

Singularity [Mic05] is a recent research project in MicrosofResearch that is aimed
at creating an operating system whose primary design goal is degeability. The
Singularity operating system is built on so-called Softwaresblated Processes (SIPS)
which show surprisingly many parallels to theoccamdCSP process model, as well as
to the way RMoX [BJV03], the occamoperating system, is designed. SIPs can be
created with low overheads and allow ne-grained concurres.

There is a strong separation between di erent SIPs that disalles simultaneous ac-

cess to the same resource by two processes. Communication betwdfs £ through

CHAPTER 1. INTRODUCTION 22

strongly typed channels, although in Singularity these are bicectional and asyn-
chronous as opposed to the channels atcamp and RMoX. Singularity channels are
typed by a contract that allows the speci cation of valid sequeces of messages along
a (bidirectional) channel.

Singularity also uses the same notion of mobile data ascamp. When a resource
is sent from one process to another, the sending process loses ihisTensures that
the ownership of mobile data always belongs to one process grtlyis semantics is
the same as inoccamp.

Although supporting distributed applications is no great conern of the project at
the moment, Singularity o ers the potential for a uni ed concurrency model. Since
everything in Singularity, from low-level drivers up to useilevel software, is built on
SIPs, it would seem logical to use the same model for distributed glcations as well.

How the Singularity project will develop in the years to comeamains to be seen.

1.8 Thesis Structure

This thesis consists of three main parts. The rst part describes #husage of pny for
the development of distributed applications. Chapter 2 intrduces the terminology
used in this thesis and presents the architecture and the startugf the pony environ-
ment. The operation of pny nodes is covered in Chapter 3. Chapter 4 is concerned
with pony's error-handling and message-handling mechanisms. Finallghapter 5
outlines a sample pny application.

The second part of this thesis presents the design and implemetnba of the pony
environment. Chapter 6 gives an overview of the internal staiure of the pony sys-
tem. pony's protocol-conversion mechanism is examined in Chapter Thapter 8
describes how networked channel-types are implemented iony. In Chapter 9, the
network-speci ¢ parts of pony are explained. The second part concludes with Chap-

ter 10, where the implementation of pny's error-handling and message-handling

CHAPTER 1. INTRODUCTION 23

mechanisms, the Application Name Server andopy's startup and shutdown mecha-
nisms are discussed.

The last part of this thesis evaluates pny's performance and contains the nal
conclusions. Chapter 11 presents a number of tests that were gad out to examine
the performance of the pny environment. Chapter 12 concludes with a discussion of
the work presented in this thesis, along with an outline of possilfuture research.

The appendices provide supplementary information that is ngart of the main
thesis. Appendix A contains a list of abbreviations and acronymssed in this thesis.
Appendix B gives a comprehensive reference of the public inigéce of the ny envi-
ronment, consisting of the public processes, data-types and coasts. Appendix C
compares the traditional implementation of the commstimébenchmark with a dis-
tributed one using pny, in order to give a practical example of how to useqny
to make an existing application distributed. Finally, Appendk D lists the author's

publications that are related to pony and its development.

Part |

Using pony

This part of the thesis is concerned with the usage of theopy environment for the
development of distributed applications. Chapter 2 introdues the terminology used
in this thesis and presents the architecture and the startup othe pony environment.
The operation of pny nodes is covered in Chapter 3. Chapter 4 is concerned with
pony's error-handling and message-handling mechanisms. FinalGhapter 5 outlines

a sample @ny application.

24

Chapter 2

Getting Started

2.1 Architecture and Terminology

2.1.1 Applications and Nodes

A group of occamp programs which are interconnected by thegny infrastructure will
be referred to as a pny application for the remainder of this thesis. Each application
consists of severahodes| one masternode and severaslavenodes.

The term "node' refers to anoccamp program which is using the pny environ-
ment. That is, there may be several nodes on the same physical cangs; these
nodes may belong to the same application or to di erent applations. In the non-
networked world, node and application would be congruentnlthe networked world,
an application is made up of several nodes; the master is the logji equivalent of the
main process of a non-networkedccamp program (in the sense that all the "wiring'

of the application originates from there).

2.1.2 Network-channel-types

A network-channel-type (NCT)is a channel-type that may connect several nodes, i.e.
whose ends may reside on more than one node. An individual NCT-ealevays resides

on a single node, and like any channel-type, an NCT may have maend variables if

25

CHAPTER 2. GETTING STARTED 26

one or both of its ends are shared. NCTs are the basic communicatiprimitive for
pony applications. Nodes communicate with each other over NCTs, ugj the same
semantics as for conventional channel-types. This includelse protocol semantics of
the items that are communicated over the NCT's channels as wels the semantics
of NCT-ends.

Like any other channel-type-end, NCT-ends may be communicad over channels,
which includes channels of other NCTs. Also, if an NCT-end is shared must be
claimed before it can be used, and it is ensured by thepy infrastructure intercon-
necting the application that every shared NCT-end can only bel@imed once at any
given time across the entire application. Practically, the raster node queues claim
requests for each end of each NCT and ensures that each NCT-end myaclaimed
once at any given time.

NCTs are either allocatedexplicitly, under a name that is unique within the
application, orimplicitly by moving ends of locally allocated channel-types to a rent

node.

2.1.3 The Application Name Server

An Application Name Server (ANS)is an external server that administrates appli-
cations. Each application has a name that is unique within th&NS by which it is
administrated. Nodes of the application nd each other by coracting the ANS. This
concept is similar to the "Channel Name Server' in JCSP.net, bnon the level of
applications rather than channels (respectively NCTs forgny). This allows a better
abstraction, as well as a simpler name-spacing.

With pony, NCTs are still allocated by using names, but this is managed e
master node of the application to which the NCT belongs, ratherhian by the ANS.
This two-level approach makes it simpler to have a single ANS forany applications.

In JCSP.net, it is also possible to administrate network-chante of many separate

CHAPTER 2. GETTING STARTED 27

JCSP.net applications within the same Channel Name Server; Wwever, avoiding
naming con icts is the programmer's task there.

The ANS stores the location of the master node of an application. hén a slave
node wants to join the application, it would contact the ANS andequest the master's
location. Then the slave would contact the master node itself. &h slave node of
an application has a networklink to the master node. Links between slave nodes
are only established when this becomes necessary, namely wheiN&T is stretched

between those two slave nodes for the rst time.

2.1.4 Network-types

The pony environment has been designed to support potentially manyetwork infras-
tructures. These are referred to asetwork-typesin the following. Currently, the only
supported network-type is TCP/IP. However, adding support forother network-types
in the future would be easy because the internal structure ofopy is modular.

In order to add support for a new network-type, modi ed version of the network
drivers and the ANS would have to be added togmy. These only comprise a relatively
small part of the pony infrastructure. The non-network-type-speci c componerg of

pony would interact with the new network drivers using the existng interface.

2.1.5 Variants of Channel-types and Their Graphical Reaesmn

For the remainder of this thesis, we will refer to the followingrariants of channel-
types: one2onechannel-types have an unshared client-end and an unshared sgrv
end. any2onechannel-types have a shared client-end and an unshared sergat.
one2anychannel-types have an unshared client-end and a shared sergad. Lastly,
any2anychannel-types have a shared client-end and a shared server-emtis prop-
erty will henceforth be called thex2x-type of the channel-type. The x2x-type is a
property of concrete instances of a channel-type, not of its/pe declaration (see

Section 1.5.3 for details).

CHAPTER 2. GETTING STARTED 28

Figure 2.1 shows how channel-types are depicted in this thesi$he client-end
of a channel-type is represented by a straight edge, the senard by a pointed
edge. Shared ends are darkened. So, for instance a one2on@&raklatype has no
darkened edges, whereas an any2one channel-type has the ghitaedge darkened
and the pointed edge not darkened. The other channel-type wants are depicted

accordingly.

one2one I any2one \

one2any ' I any2any '

Figure 2.1: Channel-type variants

2.2 Running pony on a Node

On each node of a pny application, the pony environment must be active. This
section describes the general mechanisms of hoanp operates on a node and how

it interacts with the user-level code.

2.2.1 pony-enabled occamPrograms

The pony environment mainly consists of anoccamp library incorporating pony's
functionality. In order to achieve full semantic transpareng, however, a small amount
of supportive code had to be integrated directly into the KRC compiler. Details are
discussed in Section 6.3.

The compiler support for pny introduces a minor overhead to the handling of
channel-types inoccamp programs. Although the additional cost is reasonably small,

we want occamp programmers to be able to choose whether or not to introduceith

CHAPTER 2. GETTING STARTED 29

overhead to their programs. For this, a new build-time option &s been added to
KRoC.

If KR oC is built with the " --with-pony ' option, the compiler support for pony is
enabled foroccamp programs compiled with this KRoC build; otherwise traditional
occamp programs are compiled. In the following, we will refer tmccamp programs
that are compiled by a --with-pony ' KR oC build as pony-enabled programs

Currently, pony-enabled programs and traditionaloccamp programs are incom-
patible as far as the handling of channel-types is concerneBor instance, a library
compiled by a traditional KRoC build could not be used by a pny-enabled program,
unless the library uses no channel-types. This is not a major dvhack at the mo-
ment, since any traditional occamp program (or library) can be re-compiled by a
pony-enabled KRoC build without changing its functionality. Only the p ony support
for handling channel-types, with the small extra cost, would bétroduced.

In the future, it would be desirable to make pny-enabled and traditional KRoC

builds more compatible. A possible approach is outlined in Semn 12.3.2.

2.2.2 The pony Library

In order to make the pny environment available on a node, the node must use the
pony library. This is done in the usualoccamp way by adding the following compiler

directives to the source code:

#INCLUDE "ponylib.inc"
#USE "pony.lib"

When the program is being compiled, the following linker ojpdns:
-lpony -Icif -lcourse -Isock -Ifile -Iproc

must be given to KRoC in order to link the program with the pony library as well

as with all libraries that the pony library itself uses! pony uses the CIF library for

1t is planned to enable KRoC to recognise the linker options automatically so that they would
not have to be given as parameters anymore; this has not been implemented yet, howav

CHAPTER 2. GETTING STARTED 30

its protocol-converters, and KRC's course, socket, le and process libraries [Bar00a]

for calling various routines that are needed for its functieality.

2.2.3 Public pony Processes and Handles

There is a runtime system which handles the internal functionsf pony, called the
pony kernel The user-level code of a node interacts with theany kernel through a
set of public pony processes. The number of public processes has been kept to the
necessary minimum in order to make the usage obpy as simple and intuitive as
possible.

There are public processes for starting thegmy kernel, allocating ends of NCTs,
shutting down the pony environment, as well as for error- and message-handling.
Error-handling is used for the detection of networking err@ in pony; message-
handling is used for the reporting of status and error messagesilghpony is active.

The startup process will return a given set ofiandles A handle is the client-end of
a channel-typé& which is used by the user-level code to interact with theqmy kernel.
This is done by calling the relevant public process and passinge corresponding
handle as a parameter.

Handles returned by the startup process may be shared if this isquested by
the user-level code. The user-level code may pass a shared hamadllseveral of its
sub-processes, which then need to claim the handle before they ese it for calling
a public pony process. This conforms with the general rules for shared chmat-type-
ends, which makes sense since the handés normal occamp channel-type-ends.

Apart from the tasks covered by the public processes, all interaoh between
the user-level code of a node and theopy kernel running on that node isimplicit.

This includes the communication via NCTs between processes aredent nodes, the

2Please note that in this thesis, the term “handle' may refer either to the channel-type a such, or
to its client-end. Typically, it is clear from the context which of them is meant; in case of doubt, we
will refer to “the handle channel-type' or to "the client-end of the handle' speci cally. The server-end
will always be explicitly referred to as “the server-end of the handle'.

CHAPTER 2. GETTING STARTED 31

claiming and releasing of shared NCT-ends, as well as the movemehNCT-ends
between nodes of an application. All these things are done byetuser-level code in
exactly the same way as in a traditional (non-networkeddccamp application, which
gives us semantic transparency.

By design rule, handles are not allowed to leave their node. &his, they may not

be sent to other nodes over NCTSs, since this would result in unde debehaviour.

2.3 The Startup Mechanism

The pony environment is started on a node by calling one ofgny's startup processes
If the startup process completes successfully, it forks o thegmy kernel and returns

the handles that are needed to call the other publicany processes.

2.3.1 Dierent Versions of the Startup Process

There are several startup processes with di erent names, dependion the needs of
the node. The name of the startup process speci es which handigéss supposed to

return. The following signature® describes the naming of the startup processes:
pony.startup.(u|s)nh[.(u|s)eh[.iep]][.mh]

If the name of the startup process containsuhh’, an unshared network-handleis
returned. If it contains ‘snh', the startup process returns a shared network-handle.
The network-handle can then be used for callinggmy's allocation and shutdown
processes; these are described in Sections 3.1 and 3.2.

If the name of the startup process containsueh’ or “seh’, the startup process
returns an (unshared resp. sharedgrror-handle which can then be used by the user-
level code to call pny's error-handling processes. Anep ' in the name of the startup

process means that aimitial error-point will be returned along with the error-handle.

31...] ' means optional,]'is a choice, {...) ' is for grouping.

CHAPTER 2. GETTING STARTED 32

What an error-point is will be explained in Section 4.1.2, wikh describes pny's error-
handling mechanism.

Finally, if the name of the startup process containsmh a message-handlés
returned. Message-handles are always unshared. The user-les@tle must then
use the message-handle with one obmy's message-outputters in order to display

messages from thegny kernel. Details are given in Section 4.2.

2.3.2 Parameters of the Startup Processes

The di erent startup processes have di erent parameters, dep&ing on which handles
they are supposed to return. The following parameter list is a s@pset of all possible

parameters:

(VAL INT msg.type, net.type,

VAL [IBYTE ans.name, app.name, node.name,

VAL INT node.type,

RESULT INT own.node.id,

RESULT [SHARED] PONY.NETHANDLE! net.handle,
RESULT [SHARED] PONY.ERRHANDLE! err.handle,
RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,
RESULT INT result)

The order of the parameters is the same for all startup processesefg2nding on the
name of the startup process, certain parameters may be unusedwever. [SHARED]
means that it depends on the startup process whether the paratee is ‘'SHAREDr

not.

The following parameters are common to all startup processes:

‘net.type ' is the network-type. At the moment, the only supported netwaok-
type is TCP/IP. This is expressed by passing thePONYC.NETTYPE.TCRh-

stant to the ‘net.type ' parameter.

CHAPTER 2. GETTING STARTED 33

‘ans.nameé is the name of the ANS. This can either be an empty string, or a
string consisting of the following allowed characters: lettergigits, dash, dot
and underscore. The ANS-name determines which ANS is contacted the

node. Details about this are given in Section 3.3.2.

‘app.name is the name of the wny application to which the node belongs.
Under this name, the application is administrated by the ANS. Any ging is

allowed as the application-name except the empty string.

‘node.nameéis the name of the node. The same characters are allowed astfor
ANS-name. The node-name determines which con guration le issed by pny

to resolve the network location of the node. Details are givan Section 3.3.1.
‘node.type ' is the type of the node. The following values are allowed:

{ 'PONYC.NODETYPE.MA&T¢zRs that the node is the master node of the
application. If the ANS has another master node for this appli¢eon stored

already, the startup process will fail.

{ PONYC.NODETYPE.MASTERRESHeans that the node is the master
node. However, if the ANS has another master node for this applitan
stored already, the entire application will be reset in the ANS, rad the
requesting node will be made the master of the (new instance ofeth
application. Unless other errors occur, the startup process aws succeeds
in this case. This mechanism can be used for recovery after anarhas
occurred within an application. In this way, an applicationcan be reset in

the ANS without the need to shut down and restart the ANS itself.

{ 'PONYC.NODETYPE.SL#W¢&ns that the node is a slave node. If the ANS
has no master node for this application stored yet, the startuprpcess will

fail.

{ PONYC.NODETYPE.SLAVE®W#dTmeans that the node is a slave node.

If the ANS has no master node for this application stored yet, it vliwait

CHAPTER 2. GETTING STARTED 34

until a master node signs up for this application. Once that hgpens, the

ANS will notify the waiting slave node, and the startup process camish.

‘result ' is the result returned by the startup process upon completion.lf
the startup process completes successfully, theesult ' parameter will re-
turn "'PONYC.RESULT.STARTUPoterwise it will return an error. There are
several PONYC.RESULT.STARTUtdnstants for errors that can occur during
startup; these are presented in detail in Appendix B.2.6. The imipmentation

of the startup processes is explained in Section 10.4.

If the startup process completes successfullgpwn.node.id ' returns the ID of
the node. Each node of an application is assigned a unique ID. dhode-ID of
the master is always 0. The master assigns node-IDs to the slaveshe order
in which the slaves connect to the master, starting with 1. Pleas®te that the
knowledge of the own node-ID is not needed for the function tfe pony node;

the node-ID is only returned for debugging purposes.

Finally, if the startup process completes successfully)et.handle ' will contain
the network-handle. It will be unshared or shared, dependinghavhich startup

process is used.

The following parameters are related to gny's error-handling mechanism (described

in detail in Section 4.1):

If the name of the startup process containsueh or “seh', and if the startup
process completes successfullgrr.handle ' will contain the (unshared resp.

shared) error-handle.

If the name of the startup process containsiep’, and if the startup process

completes successfullyefr.point ' will contain the initial error-point.

The following parameters are related to gny's message-handling mechanism (de-

scribed in detail in Chapter 4.2):

CHAPTER 2. GETTING STARTED 35

If the name of the startup process containsmb, the message-type must
be passed to msg.type'. There are the following valid message-types:
"PONYC.MSGTYPE.STAMd&ns that the pony kernel will output only status
messages. PONYC.MSGTYPE:ER#FaNns that only error messages are output.
Finally, ' PONYC.MSGTYPE.STATU&HRIFhe pony kernel to output both sta-

tus and error messages.

If the name of the startup process containsmh and if the startup process

completes successfullymsg.handle' will contain the message-handle.

2.3.3 Design Rules

There are certain design rules that must be followed in order tensure the correct
function of pony applications. As mentioned already, none of the handles idaved
to be sent to another node. Handles are relevant only to the nodleat has created
them.

As far as the startup of pny is concerned, the general design rule is that on each
node, the pny environment is only started once, i.e. that each node onlyetongs
to one pony application.* The reason for this design rule is to avoid cases where
NCT-ends that belong to one pny application are sent to a node that belongs to
another pony application, which would result in unde ned behaviour.

As an exception to this general rule, iis possible to write pny-enabledoccamp
programs that act as a "bridge' betweengmy applications. Such a program could be
used to exchange data-items of any type, but not NCT-ends, beter the di erent
applications. Extra careful programming would therefore beequired. Such a “bridg-
ing node' would need to start a pny environment separately for each application,
and use separate handles for the di erent applications. It wodlbe vital not to mix

up NCTs of separate applications. That is, no NCT-ends of one appéition may be

4Please recall that by “node' we mean a gny-enabledoccamp program, not a physical computer.
The latter may run many nodes at the same time.

CHAPTER 2. GETTING STARTED 36

sent to nodes of a di erent application. As long as this is ensutle a "bridging node’
will function properly.

Another design rule concerns the general order of events redjag pony, namely
the startup, the usage and the shutdown of gny. This will be examined in detail in
Section 3.2.

2.4 Starting the ANS

As discussed in Section 2.1.3, the ANS may administrate many di ereapplications.
Each node of a given application must know the network locatmof the ANS by which
the application is administrated. The ANS itself is a pre-compéd occamp program
coming with KRoC. It is placed in the bin' directory of the KRoC distribution; the
same place where thekfoc' command itself is located. The ANS for TCP/IP can

be started by calling:
ponyanstcpip

provided that KRoC's 'bin' directory is in the path of the current shell. The ANS
can be con gured with its own con guration le; see Section 3.3 for details. The

implementation of the ANS is discussed in Section 10.3.

Chapter 3

Operation of pony Nodes

3.1 Allocating NCT-ends

The basic communication paradigm in pny are network-channel-types, i.e. channel-
types whose ends may reside on more than one node. The processst#béishing
a new NCT in a pony application is called allocation. There are two ways of al-
locating NCTs. The rst possibility is to allocate the ends of an NCT explicitly,
using one of pny's allocation processes. The other possibility is to send an enfia
previously non-networked channel-type to another node. Byaihg this, the channel-
type becomes networked and thus, a new NCT is established in theryy application

implicitly .

3.1.1 Explicit Allocation

NCT-ends are allocated explicitly by using a name that is unicqaifor the NCT across
the entire pony application. This nhame is a string under which the master naa of
the application administrates the NCT. The several ends of an NC€an be allocated
on di erent nodes using this uniqgue NCT-name. The NCT-name is a shg which is
passed as a parameter togmy's allocation processes; it inot the variable name of the

channel-type-end that is allocated. The variable name mayebdi erent for di erent

37

CHAPTER 3. OPERATION OF P ONY NODES 38

ends of the NCT, and may change over time (by assignment and commication) |
as usual foroccamp variables.
There are four di erent allocation processes whose names have tfollowing sig-

nature:
pony.alloc.(u|s)(c|s)

If the name of the allocation process containsuc', it is the process for allocating
an unshared client-end of an NCT. The names of the allocation gpcesses for shared
client-ends, unshared and shared server-ends contast', "us' or ‘ss' accordingly.
Please note that any end of an NCT may be allocatedt any time. There is no
prerequisite (such as for instance in JCSP.net) that a clientrel may only be allocated
when a server-end has been allocated rst, or similar restrictis! In pony, this
characteristic has been "'moved up' to the application levelnd now applies to the
slaves and to the master (although the “slave/wait' mechanismlalvs to start a slave
node before the master; it just waits in this case, cf. Section32).

The parameters of the allocation processes are essentially thensa the only
di erence is the channel-type-end that is to be allocated. fis is the parameter list

of the allocation processes:

(PONY.NETHANDLE! net.handle,
VAL [IBYTE nct.name, VAL INT other.end.type,
RESULT <alloc-type> chan.type.end, RESULT INT result)

‘net.handle ' is the network-handle.

‘nct.name' is the name of the NCT to which the end belongs that is to be
allocated. Under this name, the NCT is administrated by the mastenode
of the application. Any string is allowed as the NCT-name excephe empty

string.

1In JCSP.net, this prerequisite would apply to writing-ends and reading-ends of network-chanels
rather than client-ends and server-ends of NCTs.

CHAPTER 3. OPERATION OF P ONY NODES 39

‘other.end.type ' is the share-typeof the other end of the NCT, i.e. of the
server-end if a client-end is to be allocated and vice versa. IMavalues are
"PONYC.SHARETYPE.UNKKN@¥/Ho not know or do not care about whether
the other end is shared or not,PONYC.SHARETYPE.UNSHAREDther end is
meant to be unshared, orPONYC.SHARETYPE.SHARE®Dother end is meant
to be shared. Any mismatches will cause the allocation process teturn an
error and fail. This would be the case for instance if on one nodee allocate
a client-end of an NCT where we specify the share-type of the semend to
be “unshared', and later we try to allocate a shared server-end that NCT
on some other node. In this case, the allocation of the serverdewould fail

because there is a mismatch.

‘chan.type.end ' is the channel-type-end variable that is to be allocated.
‘<alloc-type> ' is a wildcard for the type of the variable. It would be
"MOBILE.CHANfor the "uc' version, SHARED MOBILE.CHAd!the “sc' ver-
sion, MOBILE.CHANfor the "us' version, or SHARED MOBILE.CHAd{he

'ss' version.

‘result ' is the result returned by the allocation process. If the allod&n
is successful, theresult ' parameter will return "PONYC.RESULT.ALLOGC.OK

otherwise it will return an error. The following errors may ocur:

{ 'PONYC.RESULT.ALLOC.ILLEGALNCTNRMNCT-name is illegal.

{ PONYC.RESULT.ALLOC.CHANTYPEMISWIAeF€Hs a mismatch in the
type of the channel-type. This means that earlier on, anotmechannel-
type-end was allocated under the same name which was of a destt type
from the end that we try to allocate now. For instance, if afterhaving
allocated a client-end of type FOO! on some node, we try to allocate a

server-end of type BAR?under the same name, this error will be triggered.

CHAPTER 3. OPERATION OF P ONY NODES 40

{ PONYC.RESULT.ALLOC.X2XTYPEMISMAIEC#H is a mismatch in the
x2x-type between the channel-type-end that we try to allode and a pre-
viously allocated one. This error occurs for instance, if afta client-end of
an NCT was allocated with the share-type of the server-end beisgeci ed

as ‘unshared’, we try to allocate a shared server-end of that NCT.

{ 'PONYC.RESULT.ALLOC.X2XCOUNTMISMAS Eidor occurs if although
there is no mismatch in the x2x-type as in the previous errorhere is a
mismatch in the x2x-count i.e. if we try to allocate more than one one2x

client-end or more than one x2one server-end.

3.1.2 Usage of NCTs and Implicit Allocation

Once an NCT-end variable has been allocated, it may be used liksy other channel-
type-end variable. From the point of view of the user-level ate, the usage is seman-
tically transparent. This includes the possibility of sending a&hannel-type-end along
a channel.

If the channel over which we want to send a channel-type-end iisside an NCT
whose opposite end is on another node, the channel-type-endihwe send will end
up on that node as well. There are two possibilities now | either the channel-
type to which the end that is to be sent belongs is already netwked, or not. The
latter means that the channel-type-end was originally allcated on our node in the
traditional way, together with its opposite end.

If the channel-type is not yet networked, it becomes netwodd during the send
operation. This implicit allocation happens internally am is transparent to the user-
level code. The pny environment becomes aware of the new NCT and will hencefbrt
treat it just like an explicitly allocated one. The only di erence is that implicitly
allocated NCTs have no NCT-name, which means that no other endd that NCT
may be allocated explicitly. This is not necessary, however,nse the NCT had

originally been allocated in a client-end/server-end pairryway. If one or both of

CHAPTER 3. OPERATION OF P ONY NODES 41

its ends are shared, the relevant channel-type-end variabteay be multiplied by
simply assigning it to another variable or sending it over a chamh | as usual for
channel-types.

The second possibility is that the channel-type-end that is to & sent belongs to
an NCT already, i.e. the pny environment is already aware of this NCT. This may
apply to both explicitly and implicitly allocated NCTs. In thi s case, no prior implicit
allocation is done by the pny environment before the end is sent to the target node.

When an end of an NCT arrives on a node where no end of that NCT hagén
before during the lifetime of the ny application, the NCT-end is established on the
target node by the pny infrastructure.? Again, this may apply to both explicitly
and implicitly allocated NCTs.

In summary, apart from the actual explicit allocation itself,there is no di erence
between explicitly and implicitly allocated NCTs from the pant of view of the user-
level code. Any operation that can be done with channel-typesan be done with
both explicitly and implicitly allocated NCTs as well.

Details about the implementation of explicit and implicit dlocation and the move-

ment of NCT-ends can be found in Part Il of this thesis.

3.2 Shutting Down Nodes

At the end of a pony-enabled program, the pny environment must be shut down.
This is done by calling the pny shutdown process. The only parameter of the

shutdown process is the network-handle:

PROC pony.shutdown (PONY.NETHANDLE! net.handle)

2Future research may enhance pny's performance by not establishing the entire infrastructure
needed for an NCT-end if the end is just “passing through' a node and never used for communicatio
on the node itself. Details are given in Section 12.2.6.

CHAPTER 3. OPERATION OF P ONY NODES 42

By design rule, the mny shutdown process may only be called after all usage of
networked (or possibly networked) channel-type-end variaé$ has nished. "Usage'

here means:

claiming/releasing the channel-type-end if it is shared

using the channel-type-end for communication over its chaets (either way)

The occamp programmer must make sure that none of the above is happening in
parallel with (or after) calling the shutdown process. Of courseéhe user-level code
may use channel-types in parallel with or after callingpony.shutdown’, but the
programmer must ensure that none of these channel-types arewetked. Typically,
calling pony.shutdown’' would be the very last thing the node does, except possibly
checking for errors via the error-handling processes (cf. $en 4.1) or waiting for the
last few messages from the message-handle (cf. Section 4.2) | noofewhich involves
networkedchannel-type-ends. Algorithm 3.1 shows the typical structurefaa pony

node.

Algorithm 3.1: Typical structure of a pony node

SEQ
Do stuff
pony.startup... (...)
Do stuff like forking off the message-outputter
FORKING
Do stuff using NCTs, i.e.
* allocate them
* claim/release them
* communicate over their channels
* fork off processes that are using NCTs
Do stuff
pony.shutdown (...)
Do stuff like a final check for errors and shutting down
the error-handler

The FORKIN®Iock is there to ensure that all processes using NCTs that might

have been forked o have nished before the shutdown process ialled. Of course,

CHAPTER 3. OPERATION OF P ONY NODES 43

if no processes are forked o during the node's lifetime, th&ORKINGarrier would
not be necessary. Please note that the above layout is just a geslesuggestion.
Programmers may organise the user-level code di erently if 8y wish, as long as the
general order of pny-related events is preserved.

The shutdown process tells the gny kernel to shut down, which includes shutting
down all its components. If our node is the master node of the alpgation, the pony
kernel also noti es the ANS about the shutdown, which will then renove the appli-
cation from its database. This will prevent any further slave ndes from connecting
to the master. On slave nodes, the shutdown process nishes immeeig after the
pony infrastructure on that node has been shut down. On the masteroale, the pny

kernel waits for all slaves to shut down before shutting down itHe

3.3 Con guration

The con guration of the pony environment depends on the network-type that is
used. Apart from the networking settings, no con guration is neged by pony. This
section is concerned with the con guration for TCP/IP (which is currently the only
supported network-type) on Linux/x86 (which is currently the only platform on which
pony runs).

Since a node must be able both to contact other nodes and the AN®d to be
contacted by other nodes and the ANS, it is vital that the node aabe contacted via
the same IP address/ port number from all computers involved inhte pony application
(i.e. all computers that are running nodes or the ANS). This inades the computer
on which the node itself is running. Therefore, topologies thi Network Address
Translation between computers involved in the application @ not supported at the
moment. Please note that ifall computers involved in the application are located on
a sub-network that uses NAT to communicate with the outside worldthe NAT has
no impact on the pny application. Similarly, if there is only one computer inelved

in the application (i.e. all nodes and the ANS are running on theame computer),

CHAPTER 3. OPERATION OF P ONY NODES 44

the loopback IP address may be used to identify the location obdes and the ANS;
in this case only the ports would be di erent.

pony's network-speci c components are con gured using simple @ih-text con g-
uration les that contain the relevant settings. Settings maybe omitted, in which
case either defaults are used or the correct setting is detectadtomatically. There

are three di erent con guration les, which are discussed in thefollowing sections.

3.3.1 The Node- le

During startup, a node-name must be supplied to the startup pross (cf. Sec-
tion 2.3.2). This name may be an empty string, or a string consistg of letters,
digits, dash, dot and underscore. This name is used to determinket name of the
con guration le that is used to resolve the location of the no@ on the network (the
node- le). In TCP/IP terms, “location' means the IP address and port nunber over
which the node can be contacted by other nodes or by the ANS. Ifemode-name is

an empty string, the name of the node- le is:
.pony.tcpip.node

Otherwise it is:
.pony.tcpip.node.<node-name>

where <node-name>is the name of the node. The startup process will look for the
node- le rst in the directory from which the node is started; if the node- le is not
there, the startup process will look in the user's home directgr If the node- le is

found, the startup process will look for the following settingsn the node- le:

ip=<ip-address>

port=<port-number>

where <ip-address> ' is the IP address (in standard notation) and <port-number>'

is the port number under which the node can be contacted. Thi$® address/ port

CHAPTER 3. OPERATION OF P ONY NODES 45

number pair is used as a unique identi cation for the node's tation across the entire
application.

If no node- le is found, or if one or more of the settings are misyj in the node- le,
the relevant settings will be determined automatically by tle startup process. If no
IP address is found, the startup process will attempt to resolvehe default outgoing
IP address of the computer. If this is not possible, the startup jcess will fail. If
no port number is found, pny will automatically assign the rst free port that is
greater or equal to port 7500, the default port number for gny nodes. With this
mechanism, it is possible to run severalgmy nodes on the same physical computer
and use the same node-name for all of them. If the port number i®ihspeci ed in
the corresponding node- le, pny automatically chooses the next free one.

It is possible to run pony nodes on computers which get their IP address via
DHCP, as long as the current IP address can be resolved (which slkcbnormally be
no problem). Since the application does not know (and doestneed to know) about
the location of a node until the node e ectively joins the apfication, computers with

variable IP addresses do not present a problem.

3.3.2 The ANS-le

Similarly to the node-name, the name of the ANS must be given to ¢éhpony startup
process. The same rules as for the node-name apply to the valydif the ANS-name.
The ANS-name is used to determine the name of th&NS- le, which is used to nd

out the location of the ANS. The name of the ANS- le is either:
.pony.tcpip.ans

if the ANS-name is an empty string; otherwise it is:
.pony.tcpip.ans.<ans-name>

where <ans-name>is the ANS-name. Again, the startup process will look for the

ANS- le rst in the current directory and then in the user's home directory. If the

CHAPTER 3. OPERATION OF P ONY NODES 46

ANS- le is found, the startup process will look for the followingsettings in the ANS-

le:

host=<hostname-or-ip-address>

port=<port-number>

where <hostname-or-ip-address> ' is either the hostname or the IP address (in
standard notation) and <port-number>" is the port number under which the ANS
can be contacted.

If no ANS- le is found, or if one or more of the settings are missinqiithe ANS-
le, the startup process will use default settings instead. If no dsthame is found,
the startup process will use the loopback IP address to try to coatt the ANS |
which will fail if the ANS is not running on the same computer as ta node itself. If
no port number is found, port 7400 will be used as the default ponumber for the
ANS.

The location of the ANS must be known by all nodes in order to be ablto start
the pony application. Therefore, running the ANS on a computer using BCP is not
advisable. An exception might be static DHCP con gurations whex the computer
running the ANS is always assigned the same hostname/ IP address byetBHCP

server.

3.3.3 The ANS-con guration- le

The last le is the ANS-con guration- le , which is used by the ANS to nd out its

own port number2 The name of the ANS-con guration- le is:
.pony.tcpip.ans-conf

Again, the le is searched for in the current and in the home dirgory. If it is found,

the following setting is looked up:

3The ANS does not need to know its own IP address, since it never noti es any nodes about it
at runtime | nodes nd the ANS via the ANS- le.

CHAPTER 3. OPERATION OF P ONY NODES a7

port=<port-number>

where <port-number>" is the port number under which the ANS listens for con-
nections. If the le or the setting are not found, the default ANS rt of 7400 is

used.

Chapter 4

Error-nandling and

Message-handling

4.1 Error-handling

4.1.1 Non-transparent Error-handling

"Error-handling' in pony refers to the detection of networking errors that occur ding
the operation of the pny application. All other errors that may occur with respect to
the pony environment are errors during the call of one ofgny's public processes. As
already pointed out in the previous chapters, these errors af@ndled by returning
the relevant error via the result ' parameter of the respective process. Networking
errors, on the other hand, cannot be handled by result paramete because they may
occur at arbitrary points in time during the operation of the pony application.

This raises the question of error- and exception-handling iaccamp (and simi-
lar parallel processing architectures) in general | a topic tha is still under ongoing
discussion in the parallel processing community. Although thereakie been several in-
teresting approaches, such as Hilderink's [Hil05], there is naiomon model' for error-

or exception-handling in parallel processing architectureget. Also occamp lacks a

48

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 49

general fault tolerance mechanism. Whether ideas such as Bash TRY" CATCHbro-
posal [Bar03] or a similar approach will be implemented in theear future, cannot
be foreseen at the moment.

Since there is currently no built-in error-handling or faut-tolerance mechanism
in occamp on which pony's error-handling could be built, we have chosen an ap-
proach speci c to the pny environment. Therefore, error-handling is the only part
of pony that is not semantically transparent in the way de ned earler in this thesis.
Programmers of pny nodes have two options now. They may either do it the “tra-
ditional' occamway, namely trust that the application is error-free and livewith the
consequences otherwise, or useny's (non-transparent) error-handling mechanism

to check for errors.

4.1.2 pony's Error-handling Mechanism

If the startup process is requested to return an error-handlehé pony kernel starts an
error-handler which keeps track of errors that occur during the lifetime othe node.
Every time a networking error happens on the node, the errdrandler is noti ed
about it and stores it. The user-level code may check for errokept by the error-
handler by using ny's error-handling processes together with the error-hanell

Please note that pny's error-handling mechanism was speci cally designed for
the detection of networking errors, not for xing them. The absence of a genaf
fault-tolerance mechanism inoccamp as a base for pny's error-handling makes it
very di cult to develop a mechanism that allows to recover fran networking errors
in all possible situations where they might occur. It is therefore upotthe user-level
programmer to react to errors appropriately. This may invole using existing patterns
such as poisoning [Wel89].

pony's error-handling allows the user-level code to check forrers that happened
after a given point in time. This point is called anerror-point. The general mecha-

nism is that the user-level code asks the error-handler for anrer-point beforethe

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 50

occurrence of an event that shall be watched for errors. The ewenay be anything
the programmer wishes, be it communication over NCTs, allocatinnew NCT-ends,
etc. The user-level code may now at any given time check for ers that happened
after the error-point, i.e. after the event started.

Algorithm 4.1 shows an example where a networking event is wagd for errors.
Please note that this is just an example. There may be situationghere a timeout
of ten seconds, or even a timeout in general, would not be apprae. pony's error-
handling processes have speci cally been designed agemeraltool for the detection

of errors | how to use them is up to the user-level code.

Algorithm 4.1: An error-handling example

SEQ
Get error-point from error-handler
CHAN BOOL sync:

PAR
SEQ
Event that is to be watched
sync ! TRUE -- Event has finished, synchronising
TIMER tim:
INT t:
SEQ
tim ? t -- Prepare timer
PRI ALT
BOOL any:
sync ? any -- Event has finished successfully
Prepare to continue normally
tim ? AFTER t PLUS 10000000 -- 10 seconds timeout
SEQ

Get errors that happened after the error-point
React accordingly

A special error-point is the so-callednitial error-point which may be returned by
the startup process if requested. The purpose of the initial enrgpoint is to cover
errors that may occur right from the startup of the pony environment. There are
networking events happening even before the startup processishes. It would not
be possible for the user-level code to get an error-poibeforethose events via the

error-handling processes; hence it is returned by the startup geess itself. Once the

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 51

user-level code has acquired it, the initial error-point is aormal error-point just like
the ones acquired later.
Errors returned by the error-handler are records that conia speci ¢ information

about the error that occurred. The layout of the error records as follows:

DATA TYPE PONY.ERROR
RECORD
BOOL ans.concerned:
BOOL master.concerned:
BOOL remote.node.concerned:
INT remote.node.id:

INT err.code:

The elds of the record are fairly self-explanatory. The thre Boolean ags de-
note whether the error had anything to do with the ANS, the masteior a remote
node'. ‘remote.node.id ' contains the ID of the remote node if applicable. Finally,
‘err.code ' contains the error-code. For TCP/IP (which is currently the only sup-

ported network-type), this may be one of the constants set ouhiAppendix B.2.9.

4.1.3 Getting Information About NCTs and Remote Nodes

In order to evaluate the remote.node.id ' eld of a returned error properly, we
need to be able to nd out which remote nodes might be involveth a networking
event. Between slave nodes, network communication may onlyggen while the link
between them is established or shut down, or when there issassionof an NCT
between the two nodes. The latter means that the NCT is stretchedetween them
for communication, i.e. the client-end of the NCT is located o one of the nodes,

the server-end on the other, and each of the ends is either unstd, or shared and

!Note that the master may be a remote node too.

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 52

claimed on the respective node. Any other network communicath may only happen
between a slave and the master, or between the master and the ANS isigrshutdown.
With p ony's error-handling processes, it is possible to nd out about theurrent
remote nodeof an NCT-end. This is the node on which the other end of the NCT is
currently located (if unshared) or claimed (if shared). Findig out about the current
remote node of an NCT-end is done in two steps. The rst step is to naut the ID
of the NCT to which the end belongs. Each NCT has a unique ID acroskd entire
pony application which is assigned when the NCT is allocated. Thiapplies both
to explicitly and implicitly allocated NCTs. Once the NCT-ID has been assigned,
it does not change during the lifetime of the NCT. Finding out he NCT-ID for an
NCT-end would typically be done right after its (explicit or implicit) allocation.
There are four processes for nding out the NCT-ID whose names hathe fol-

lowing signature:
pony.err.get.nct.id.(u|s)(c|s)

The naming follows the same scheme as for the allocation process€hat is, there
are processes for unshared/shared client-ends/server-ends. Apfdm the channel-

type-end that is to be checked, the parameters are the same @t four processes:

(<end-type> chan.type.end,
RESULT INT nct.id, result)

‘chan.type.end ' is the channel-type-end variable that is to be checked.
‘<end-type>' is a wildcard for the type of the variable. It would be
"'MOBILE.CHANfor the "uc' version, SHARED MOBILE.CHA®!the "sc' ver-
sion, MOBILE.CHANfdr the "us' version, or SHARED MOBILE.CHAd{he

'ss' version.

‘result ' is the result returned by the process. It can be one of the follamg

constants:

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 53

{ PONYC.RESULT.ERR.GN'L.OKe process completed successfully. In this

case, nct.id ' now contains the NCT-ID for the channel-type-end that
was checked.

{ 'PONYC.RESULT.ERR.GNI.CTENDUNDEHINERhannel-type-end vari-
able was unde ned.

{ 'PONYC.RESULT.ERR.GNI.CTENDNOTNETW@RHiEbPnel-type belong-

ing to the channel-type-end variable was not networked.

Knowing the ID of a given NCT, we may now at any time ask the errohandler about

its current remote node. This is done with the following proess:

PROC pony.err.get.current.remote.node
(PONY.ERRHANDLE! err.handle,

VAL INT nct.id,
RESULT INT remote.node.id, result)

‘err.handle 'is the error-handle.
‘nct.id 'is the ID of the NCT that is to be checked.
The result ' can be one of the following constants:

{ PONYC.RESULT.ERR.GCRNI©¥process completed successfully. If this

is the case, remote.node.id ' now contains the ID of the current remote

node of the checked NCT.

{ 'PONYC.RESULT.ERR.GCRN.INVALIDNTR¢DNCT-ID is invalid. This
does not necessarily mean that there is no NCT with this ID anywhe
in the pony application, but that on this node, there has never been an

NCT-end with the given NCT-ID since the application has started.

{ 'PONYC.RESULT.ERR.GCRN.NOSEJ®kD#! is currently no session be-

tween this node and a remote node for the given NCT.

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 54

{ PONYC.RESULT.ERR.GCRN.SAMEN®I®2ES currently a session for the

given NCT, but both of its ends are on the same node (namely thise).

4.1.4 Getting and Deleting Error-points
To get a new error-point from the error-handler, the followng process must be called:

PROC pony.err.new.err.point
(PONY.ERRHANDLE! err.handle,
RESULT INT err.point)

where err.handle ' is the error-handle. The new error-point will be returned B
‘err.point
If an error-point is no longer needed, it should be deleted. This done by calling

the following process:

PROC pony.err.delete.err.point
(PONY.ERRHANDLE! err.handle,
VAL INT err.point,
RESULT INT result)

Again, ‘err.handle 'is the error-handle. err.point 'is the error-point that is to be
deleted. The result ' will be either 'PONYC.RESULT.ERR.DEPifQKe error-point
has been deleted successfully, dPONYC.RESULT.ERR.DEP.INVALIDERRRQHET
error-point was invalid.

The main purpose for deleting an error-point is to save the enrdgnandler from
unnecessary work. Internally, the error-handler only keepsrers if there was an
error-point beforehand, otherwise the errors are discardedhis makes sense, since
without an error-point, the errors cannot be retrieved by tle user-level code. So,
if an error-point that is no longer needed is not deleted, therror-handler will keep
accumulating errors that may (if there were no other error-pints beforehand) never

be retrieved. For the user-level code itself, not deleting enr-points that are no longer

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 55

needed makes no practical di erence, because errors that leawot been retrieved are
discarded automatically when the error-handler is shut downlt is more a matter of

“clean programming’, such as freeing memory that is no longesed in C programs.

4.1.5 Getting Errors That Happened After a Given Error-point

The following process will retrieve errors that happened at a given error-point:

PROC pony.err.get.errs.after
(PONY.ERRHANDLE! err.handle,
INT err.point,
VAL BOOL check.ans, check.master, check.all.nodes,
VAL []JINT nodes.to.check,
RESULT MOBILE [JPONY.ERROR err.array,
RESULT INT result)

‘err.handle 'is the error-handle.

‘err.point ' is the error-point. If the process completes successfully, tivalue
of the error-point will be adapted. Logically, the error-pant is "‘moved' to the
current point in time. Ifitis used again later to retrieve erors, the error-handler

will then return errors that happened after now.

The ‘check.ans' and ‘check.master' ags tell the error-handler whether to

return errors that involve the ANS or the master node of the apptiation.

‘nodes.to.check 'is an array of node-IDs. The error-handler will return erros
involving these nodes. If thecheck.all.nodes ' agis TRUEall errors involv-
ing remote nodes are returned; in this case the content afodes.to.check ' is

irrelevant.

The returned Yesult ' will be either 'PONYC.RESULT.ERR.GEA.@Kvhich

case err.array ' will return all errors that happened after err.point 'and t

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 56

the above criteria, or PONYC.RESULT.ERR.GEA.INVALIDERRKG@HNEBrror-

point was invalid.

4.1.6 Shutting Down the Error-handler

Unlike the other internal components of the pny kernel, the error-handler is not shut
down automatically when the pony.shutdown' process is called. Instead, it must be
shut down manually by calling a special shutdown process, whose Yoplarameter is

the error-handle:
PROC pony.err.shutdown (PONY.ERRHANDLE! err.handle)

The reason for having a separate shutdown process is that whilesthony environment
is being shut down, there are still networking events happergrwhich may fail. Hence,
the user-level code may want to check for errors during (i.en parallel with) or after
the shutdown of the pny kernel.

After the “pony.shutdown' process has been called, it is not allowed to call
‘pony.err.get.nct.id.* ' or “pony.err.get.current.remote.node ' any longer,
because the infrastructure necessary for calling them is not ingee anymore. It
would not make much sense to call them at this point anymore anyy, since as
explained in Section 3.2, NCTs are not allowed to be used anymsoafter the pony
kernel has been shut down. All other error-handling processes yrstill be used after

the shutdown of the pny kernel, up until the error-handler is shut down itself.

4.2 Message-handling

"Message-handling' in pny refers to the reporting of status and error messages by
the pony kernel. It is intended for debugging purposes ando requirement for the
actual function of the pony environment.

If requested during the startup of the ny environment on a node, the pny kernel

reports status and/or error messages (cf. Section 2.3.2). Stat messages are there

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 57

primarily for debugging and testing purposes. They inform abdumportant events
during the operation of the pny environment, such as the communication between
the internal components of the pny kernel, the forking o of new components, and
networking events. Error messages are reported when networdierrors occur, i.e.
whenever the error-handler would be noti ed about an error awell.

If the startup process is requested to return a message-handlegetipony ker-
nel starts a message-handlerThe internal components of the pny kernel send all
messages to the message-handler, which bu ers them until theyeaoutput. This
mechanism is similar to how the error-handler works.

The actual output of the messages is performed byopy's message-outputters
Unlike the error-handling processes, a message-outputter is edllonce, and then
autonomously outputs all messages it gets from the message-handintil the pony
kernel, and the error-handler if applicable, have been shutodin. After the last
message has been taken by the message-outputter, the messagelbamstiuts itself
down automatically. The same applies to the message-outputtafter the last message
has been output.

Typically, a message-outputter would run in parallel with eveithing else the
node does that might trigger messages from theopy environment. It should be
either forked o after the startup of the pony kernel, or put in a PARconstruct to
run in parallel with the rest of the node's function.

There are eight di erent message-outputters whose names haveetfollowing sig-

nature:
pony.msg.out.(u|s)(o[.(u|s)e]|e)

There are message-outputters with unshared/shared output chaals (for status
messages) and/or unshared/shared error channels (for error messs)g| depending
on which kind(s) of messages are supposed to be reported. Outputiarror channels
are ordinary occamp channels carrying BYTE. Although the message-outputters

may be plugged into any BYTEchannels the programmer wishes, it would typically

CHAPTER 4. ERROR-HANDLING AND MESSAGE-HANDLING 58

be the standard output and standard error channels declared ithe header of the
node's main process.

The di erent message-outputters have di erent parameters, deending on which
channels are meant to be plugged in. The following paramethst is a superset of all

possible parameters:

(PONY.MSGHANDLE! msg.handle,
[SHARED] CHAN BYTE out!,
[SHARED] CHAN BYTE err!)

Depending on the name of the message-outputter, one of the chals may be not
used. [SHARED]Jmeans that it depends on the message-outputter whether the ah-
nel is SHAREDr not.

‘'msg.handle’ is the message-handle.

If the name of the message-outputter containsi0' or "so', ‘out' is the (unshared

resp. shared) output channel for pny's status messages.

If the name of the message-outputter containsi€' or "se', “err ' is the (unshared

resp. shared) error channel for gny's error messages.

Chapter 5

A Sample Application

This chapter presents a samplegny application in order to enable a better under-
standing of what has been discussed so far. This sample applicatioas purposely
been kept simple. The idea is to draw the attention of the readeo the interplay of
the di erent aspects of the pny environment, rather than presenting a very realistic
but unnecessarily complex application. Therefore, parts ohé code that are not
directly related to pony are usually folded in the sample algorithms.

The sample application consists of three types of nodes. The mastede is a
broker that establishes connections betweeworker nodes andcustomernodes. The
workers provide some service for the customers. Both workers atuktomers connect
to the broker via an explicitly allocated NCT, the broker-handle When a worker
becomes ready, it passes the client-end of a channel-type (therker-handlg to the
broker; the worker itself holds the server-end of the workeraimdle. When the client-
end of the worker-handle is sent to the broker for the rst timejt becomes implicitly
networked.

The broker keeps the client-ends of the worker-handles in atdbase. When a
customer needs the service of a worker, it noti es the broker, hich then passes
a worker-handle from its database to the customer if there is enavailable. The
customer and the worker can now communicate over the workeaindle about the

service needed by the customer. When the transaction betweenreticustomer and

59

CHAPTER 5. A SAMPLE APPLICATION 60

the worker is nished, the customer sends the client-end of theasker-handle back
to the worker over the worker-handle itself. The worker can #n re-register with the
broker.

Algorithm 5.1 shows the declarations of the handles and the goxols that are
carried by the channels inside the handles. These declaratioase in an include
le that will be included by the three nodes. Algorithms 5.2 thiough 5.4 show the
implementation of the broker, worker and customer nodes.

For the sake of simplicity, the broker and the worker are runnig in nitely. Only
the customer node terminates. To keep the algorithms short,opy's error-handling
and message-handling are only demonstrated in the customer nodespecially the
demonstration of the error-handling is very simple | the entire operation of the node
is guarded by a single timeout and watched for errors colleeély. Typically, the user-
level code would watch the individual networking events foerrors separately. For an
example timeout/ error watching mechanism, please refer to Adgithm 4.1.

Figure 5.1 shows a possible layout of the sample application. &mnthe topology
of the application changes dynamically, the gure can only & a "snapshot' of a given
point in time. There are seven nodes altogether, namely the dker, three workers
and three customers. All workers and customers are connected to the broker via the
broker-handle. Customer 1 currently holds the worker-handlconnecting to worker 1;
the other customers have not acquired a worker-handle yet. \Wer 2 may have
just started and not yet registered with the broker, or just nishal the service for
a customer but not yet re-registered with the broker. Therefa, worker 2 currently
holds the client-end of its worker-handle itself. Finally, wrker 3 is currently registered

with the broker, which holds the relevant worker-handle.

1For the sake of simplicity, nodes and processes are depicted as a single box, becairs¢his
sample application, on each node there is only the main process. Generally, it isnportant to
distinguish between nodes and processes, since many processes may run on the same node.

CHAPTER 5. A SAMPLE APPLICATION

61

Algorithm 5.1: Sample application: Declarations

-- Filename: “decls.inc'

-- Forward declaration
CHAN TYPE WORKERHANDLE:

-- To broker
PROTOCOL BROKERHANDLE.TO.BROKER
CASE
-- Register worker
reg.worker; WORKERHANDLE!
-- Get worker
get.worker

-- From broker
PROTOCOL BROKERHANDLE.FROM.BROKER
CASE
-- No worker available
no.worker.available
-- Return worker-handle
get.worker.confirm; WORKERHANDLE!

-- Broker-handle
CHAN TYPE BROKERHANDLE
MOBILE RECORD
CHAN BROKERHANDLE.TO.BROKER to.broker?:
CHAN BROKERHANDLE.FROM.BROKER from.broker!:

-- To worker
PROTOCOL WORKERHANDLE.TO.WORKER
CASE
Stuff dealing with the service provided by the worker
-- Finish transaction and return worker-handle
finish; WORKERHANDLE!

-- From worker
PROTOCOL WORKERHANDLE.FROM.WORKER
CASE
Stuff dealing with the service provided by the worker

-- Worker-handle
CHAN TYPE WORKERHANDLE
MOBILE RECORD
CHAN WORKERHANDLE.TO.WORKER to.worker?:
CHAN WORKERHANDLE.FROM.WORKER from.worker!:

CHAPTER 5. A SAMPLE APPLICATION 62

Algorithm 5.2: Sample application: The broker

#INCLUDE "decls.inc"
#INCLUDE "ponylib.inc"
#USE "pony.lib"

PROC broker (CHAN BYTE key?, scr!, err!)
INT own.node.id, result:
PONY.NETHANDLE! net.handle:
BROKERHANDLE? broker.handle.svr:
SEQ
-- Start pony
pony.startup.unh (PONYC.NETTYPE.TCPIP, ™, "sample-app ",
"™, PONYC.NODETYPE.MASTER,
own.node.id, net.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-- Allocate server-end of broker-handle
pony.alloc.us (net.handle, "broker-handle”, PONYC.SHAR ETYPE.SHARED,
broker.handle.svr, result)
ASSERT (result = PONYC.RESULT.ALLOC.OK)
-- Start infinite loop (therefore no shutdown of pony kernel later)
WHILE TRUE
-- Listen to requests from broker-handle
broker.handle.svr[to.broker] ? CASE
-- Register worker
WORKERHANDLE! worker.handle:
reg.worker; worker.handle
Store “worker.handle' in database
-- Get worker
get.worker
IF
Worker available
WORKERHANDLE! worker.handle:
SEQ
. Retrieve “worker.handle' from database
broker.handle.svr[from.broker] ! get.worker.confirm;
worker.handle
TRUE
broker.handle.svr[from.broker] ! no.worker.available

CHAPTER 5. A SAMPLE APPLICATION 63

Algorithm 5.3: Sample application: The worker

#INCLUDE "decls.inc"
#INCLUDE "ponylib.inc"
#USE "pony.lib"

PROC worker (CHAN BYTE key?, scr!, err!)
INT own.node.id, result:
PONY.NETHANDLE! net.handle:
SHARED BROKERHANDLE! broker.handle:
WORKERHANDLE! worker.handle:
WORKERHANDLE? worker.handle.svr:
SEQ
-- Start pony
pony.startup.unh (PONYC.NETTYPE.TCPIP, ™, "sample-app ",
", PONYC.NODETYPE.SLAVEWAIT,
own.node.id, net.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-- Allocate shared client-end of broker-handle
pony.alloc.sc (net.handle, "broker-handle”, PONYC.SHAR ETYPE.UNKNOWN,
broker.handle, result)
ASSERT (result = PONYC.RESULT.ALLOC.OK)
-- Allocate worker-handle
worker.handle, worker.handle.svr := MOBILE WORKERHANDLE
-- Start infinite loop (therefore no shutdown of pony kernel later)
WHILE TRUE
SEQ
-- Register with broker
CLAIM broker.handle
broker.handle[to.broker] ! reg.worker; worker.handle
-- Inner loop
INITIAL BOOL running IS TRUE:
WHILE running
-- Listen to requests from worker-handle
worker.handle.svr[to.worker] ? CASE
Stuff dealing with the service provided by the worker
Deal with it
-- Finish transaction and get worker-handle back
finish; worker.handle
-- Exit inner loop
running := FALSE

CHAPTER 5. A SAMPLE APPLICATION

Algorithm 5.4: Sample application: The customer

Compiler declarations
PROC customer (CHAN BYTE key?, scr!, err!)
INT own.node.id, err.point, result:
PONY.NETHANDLE! net.handle:
PONY.ERRHANDLE! err.handle:
PONY.MSGHANDLE! msg.handle:
SEQ
pony.startup.unh.ueh.iep.mh -- Start pony
(PONYC.MSGTYPE.STATUSERR, PONYC.NETTYPE.TCPIP, iplészpp",
" PONYC.NODETYPE.SLAVEWAIT, own.node.id, net.handle,
err.handle, err.point, msg.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
CHAN BOOL sync:
PAR
pony.msg.out.uo.ue (msg.handle, scr!, err!) -- Message-o utputter
SHARED BROKERHANDLE! broker.handle:
SEQ
Allocate shared client-end of broker-handle
IF
result <> PONYC.RESULT.ALLOC.OK
Deal with allocation error
TRUE
BOOL worker.available:
WORKERHANDLE! worker.handle:
SEQ
CLAIM broker.handle -- Get worker-handle from broker
SEQ
broker.handle[to.broker] ! get.worker
broker.handle[from.broker] ? CASE
no.worker.available
worker.available := FALSE
get.worker.confirm; worker.handle
worker.available := TRUE
IF
worker.available
SEQ
Communicate over worker-handle regarding service
-- Finish transaction and return worker-handle
worker.handle[to.worker] ! finish; worker.handle
TRUE
Deal with absence of workers
pony.shutdown (net.handle) -- Shut down pony kernel
sync ! TRUE
SEQ
Wait for “sync' signal or timeout and check for errors
pony.err.shutdown (err.handle) -- Shut down error-handle r

CHAPTER 5. A SAMPLE APPLICATION

65

worker 1

WORKERHAND),—E

customer 1

worker 2 worker 3
@) a)
pd prd
< <
T T
14 o
L L
N N4
04 o
@] (@]
= =
BROKERHANDLE broker
customer 2 customer 3

Figure 5.1: Sample application: Possible dynamic layout

Part |l

Design and Implementation of

pony

This part of the thesis presents the design and implementationf ahe pony envi-
ronment. Chapter 6 gives an overview of the internal struct of the pony system.
pony's protocol-conversion mechanism is examined in Chapter CThapter 8 describes
how networked channel-types are implemented inopy. In Chapter 9, the network-
speci c parts of pony are explained. This part concludes with Chapter 10, wherthe
implementation of pony's error-handling and message-handling mechanisms, the Ap-

plication Name Server and pny's startup and shutdown mechanisms are discussed.

66

Chapter 6

Structure of pony

The rst part of this chapter introduces the internal components of the pony system
and de nes certain terms that are necessary in order to explapony's functionality.
The second part discusses the compiler support foomy-enabled KRoC builds, and

the functionality of the main pony kernel.

6.1 NCTs and CTBs

There are two important terms related to pny which it is vital not to get confused:
network-channel-types and channel-type-blocks. As alreadge ned, a network-
channel-type (NCT) is a channel-type that may connect severalodes. An NCT
is alogical construct that comprises a networked channel-type across thatee pony
application. Each NCT has a unique ID, and a unique name if it wa allocated
explicitly, across the application.

A channel-type-block (CTB)is the memory block of a channel-type on an individ-
ual node. This memory structure holds all information that ismeeded for the function
of the channel-type. CTBs are located in the dynamic mobilesge of the node. All
channel-type-end variables belonging to a certain channgipe are pointers to that

channel-types's CTB. Details about the layout of a CTB can bedund in [Bar03].

67

CHAPTER 6. STRUCTURE OF P ONY 68

In the pony environment, we distinguish betweemon-networkedand networked
CTBs. A traditional (intra-processor) channel-type is made umpf exactly one, non-
networked, CTB. An NCT is made up of several, networked, CTBs, naely one
CTB on each node where there are (or have been) ends of that NCThe CTBs of
an NCT are interconnected by the pny infrastructure. Non-networked CTBs can

become networked by implicit allocation, cf. Section 3.1.2

6.2 Internal Components of pony

Apart from some compiler support for CTBs in pny-enabled programs (discussed
in detail in Section 6.3), pny is implemented entirely as anoccamp library. Most
parts of this library were implemented inoccamp. Some auxiliary functions were
implemented in C. The protocol-converters (see below) weremplemented as CIF
processes. Figure 6.1 shows the layout of theny environment with its various
components and the external and internal handlésused for communication between
the individual components.

The gure assumes that the network-handle and the error-handlare unshared,
the node is the master, and the network-type is TCP/IP. In orde to keep the gure
uncluttered, each component is just depicted once, even ifntay occur several times
within the pony environment. Unshared client-ends of internal handles aieeld by
the process in which the end is located in the guré.Shared client-ends of internal
handles may be held by several component processes at the sameetirtf such an
end extends into another process (the instant-handler in the TB-handler or one of
the managers), this means that the relevant process holds thedeand will pass it to

other components on request.

1Both the external and the internal handles are channel-types.
2This applies to the internal decode- and encode-handles, whose client-ends are held by the
relevant CTB-handler.

CHAPTER 6. STRUCTURE OF P ONY

69

protocol-
decoder

protocol-
encoder

decode-
handler
encode-
handler

CTB-manager

NCT-handler

NCT-manager

TCP/IP
link-handler

TCP/IP
link-manager

message-
handler

error-handler

message-—>— output
outputter —— error

Figure 6.1: Layout of the pny environment

CHAPTER 6. STRUCTURE OF P ONY 70

The communication between the individual components of th@ony environ-
ment follows the principle of cycle-free client/server comuomication as set out in
[MW96]. Although the communication structure between the indvidual components
may change dynamically, it is guaranteed that at any given the, the client/server

digraph is cycle-free; the communication is therefore deladk-free.

6.2.1 The Individual Components

This section brie y introduces the individual components ofthe pony environment.
A detailed description of their functionality, which includes the usage of the internal

handles for communication between the components, will follv in the next chapters.

The Protocol-converters

The purpose of theprotocol-convertersis to enable the mny environment to support
networked channels carrying all commoroccamp protocols. For each networked
channel (i.e. for each channel in a networked CTB), there isne set of protocol-
converters, consisting of grotocol-decoderand a protocol-encoder

On the sending node, the decoder decodes the incoming protioicho a special
protocol that is used internally by the pny kernel. After something has been sent
from one node to another via the pny environment, the encoder on the receiving node
takes the intermediary pny protocol and encodes it back into the user-level protocol
before passing it on to the receiving user-level proces3he protocol-converters are

described in detail in Chapter 7.

3The terms “decode' and “encode' are to be seen from the point of view of the user-level poabl.
This is just a convention | from the point of view of the intermediary p ony protocol, the two terms
would have to be exactly the other way round.

CHAPTER 6. STRUCTURE OF P ONY 71

Decode-handler and Encode-handler

The decode-handletakes the data from the decoder and packs it into a suitable forat
for sending it over the network. On the receiving node, thencode-handletakes the
packed data coming from the network, unpacks it, and passes ihdo the encoder.
Additionally, the decode-handler and the encode-handler dewith the implications
arising from the movement of NCT-ends over networked channedsd the implicit

allocation of NCT-ends where applicable. Details are given iSection 7.8.

The CTB-handler

The CTB-handler deals with the function of a networked CTB. There is a CTB-
handler for each networked CTB on the node. The CTB-handlerdndles incoming
claim and release requests for the ends of the CTB, as well as tt@mmunication
along its channels. Please note that the instant-handler, thdient-listener and the
server-listener in the CTB-handler (cf. Figure 6.1) are no aaal components of pny
but just simple sub-processes of the CTB-handler. What they do isxplained in

Section 8.1, which describes the functionality of the CTB-haller in detail.

The CTB-manager

The CTB-manageris responsible for starting new CTB-handlers when needed (dng
explicit allocation and when making a previously non-netwéed CTB networked). It
also keeps the various internal handles for existing CTB-halets and passes them to
other pony components on request (via theCTB-manager-handlg¢. The implemen-

tation of the CTB-manager is discussed in Section 8.2.

The NCT-handler

NCT-handlersonly exist on master nodes. There is one NCT-handler for each NCT

in the application. The NCT-handler is responsible for handlig claim and release

CHAPTER 6. STRUCTURE OF P ONY 72

requests coming from the CTB-handlers on the various nodestbé application. This
involves queueing claim requests (if several nodes try to ataithe same NCT-end)

until they get served. Details can be found in Section 8.3.

The NCT-manager

The NCT-manager resides on the master node and starts new NCT-handlers when
needed. This is the case when the rst end of an NCT is allocated @icitly, or
when a previously non-networked CTB is made networked on a nedand a new
NCT needs to be allocated implicitly. The NCT-manager keeps thNCT-handlesfor
existing NCT-handlers and passes them (via thRCT-manager-handl¢ to requesting

link-handlers®. Section 8.4 describes the implementation of the NCT-manager

The link-handler

Link-handlers handle network links between two nodes of a pony applicationOn
each node, there is a link-handler for each link that has beastablished to another
node. The link-handler takes messages fronomy's various components and passes
them on to the remote node via the link. When the link-handleron the receiving
node gets a network-message over its link, it passes it on to thengmonent for which
the message is intended. Section 9.1 discusses the implementatibthe link-handler
for TCP/IP.

The link-manager

The link-managerestablishes new links (and starts new link-handlers) when necegsa
For TCP/IP, this means that new socket connections to other ndes are established or

incoming socket connections from other nodes are acceptedellink-manager keeps

“No other components will ever request an NCT-handle.

CHAPTER 6. STRUCTURE OF P ONY 73

the link-handlesfor existing link-handlers and passes them (via thénk-manager-
handle to requesting pony components. The implementation of the link-manager for
TCP/IP is explained in Section 9.2.

All messages exchanged between two nodes are multiplexed over link between
the nodes. This applies especially to messages sent over netwdrgbannels. The
multiplexing of possibly many networked channels over a singliek was inspired by
the Virtual Channel Processor of the T9000 transputer [Inm93],ltnough the routing
in pony is dynamic because NCT-ends may move to other nodesong's routing is a

dynamic version of the “crossbar' routing found in JCSP.net [WAB2].

Error-handler and Message-handler

The error-handler and the message-handler have already beetraduced in Chap-
ter 4. A detailed description of the implementation of pny's error-handling mech-
anism is given in Section 10.1. gmy's message-handling mechanism is discussed in

detail in Section 10.2.

6.2.2 Modular Design of pony

The structure of the pony environment is modular, which makes it easy to replace
components when needed. The most obvious application for shieature would be
adding support for new network-types to pny. This could easily be done by adding
new network drivers (a link-handler and a link-manager), asvell as a new ANS, for
the new network-type. The other pny components would not need to be modi ed
and could communicate with the new network drivers via the agting interface (the
internal handles). During startup, the correct link-manageris started by the pony
environment, depending on the network-type used.

The implementation of the startup and shutdown of the various @mponents, as
well as the ANS, are described in detail in Sections 10.3 throud®.5. To understand

the details of the startup and shutdown of pny properly, it is necessary to understand

CHAPTER 6. STRUCTURE OF P ONY 74

the implementation of pony's components rst, therefore startup and shutdown are

discussed in the last chapter of Part II.

6.3 CTBs in pony-enabled Programs

In order to accommodate the needs of NCTs, CTBs in aopy-enabled KRoC build
contain more information than their “traditional' counterparts. This applies to both
networked and non-networked CTBs, since non-networked CTBsay implicitly be-
come networked at any time. In traditional (non-pny-enabled) KRoC builds, the
memory layout of CTBs remains as it used to be.The changes in the memory layout
and the handling of CTBs in ppny-enabled programs were implemented in the KT
compiler by Fred Barnes from the University of Kent. A traditional CTB contains

the following:

A reference-count that keeps track of how many ends of the amzel-type are
currently in scope. It is 2 at the point of allocation, but may ncrease (when
shared ends get auto-cloned) or decrease (when an end goes bstope) during
the lifetime of the channel-type. When the reference-couneaches zero, the
CTB is deallocated.

The channel-words for the channels in the channel-type.

Semaphores for the client-end and the server-end if the respee end is shared.
The server-semaphore is located above the client-semaphoréneTmemory for
the server-semaphore is not allocated if the server-end is unstd the memory
for the client-semaphore is always allocated unlebsthends are unshared. The
latter is to ensure that the server-semaphore is always locatet the same

memory o set.

SA possible future improvement to keep also in @ny-enabled programs the traditional, smaller,
memory layout for CTBs that will never become networked is outlined in Section 123.2.

CHAPTER 6. STRUCTURE OF P ONY 75

Table 6.1 shows the layout of a CTB in a pny-enabled KRoC build. The order is
bottom-up, i.e. the reference-count is located at the lowestddress. The reference-
count, the channel-words and the client-/server-semaphora@se the same as for tra-
ditional CTBs. Please note that there are always both semaphaén the CTB (even
if neither end is shared) because the state- eld and the state-saphore are stored

on top of them.

Size ltem

1 word | reference-count

1 word | pointer to type-descriptor
1 word | network-hook pointer

n words | channel-words of the channels in the channel-type
2 words | client-semaphore
2 words | server-semaphore
1 word | state- eld

2 words | state-semaphore

Table 6.1: Memory layout of CTBs in a pny-enabled KRoC build

6.3.1 The Pointer to the Type-descriptor

As discussed in Section 1.5.6, ingny-enabled KRoC builds, the compiler generates
type-descriptors for all channel-types that have been dectd. In the CTB of each
channel-type, there is a pointer to the relevant type-desgor. The type-descriptor
describes the structure of the CTB and the protocols carried bghe channels within
the CTB. The information stored in the type-descriptor is used dring the explicit
allocation of NCT-ends, for the implicit allocation of an NCT wren a non-networked
CTB becomes networked, and when an end of an NCT arrives on a reofibr the rst
time and a new networked CTB needs to be allocated for it.
As already pointed out in Section 1.5.6, gny's allocation processes use a special

"MOBILE.CHANarameter for the end that is to be allocated. Since the acal type
of the end is unknown at compile-time, the type-descriptor, fich is supplied to the

allocation process as a second, hidden, parameter, is used ttedaine the structure

CHAPTER 6. STRUCTURE OF P ONY 76

of the channel-type. This is necessary both to allocate the meny for the CTB and
its internal structure, as well as for setting up the necessary firastructure for the
NCT in the pony environment. The explicit allocation mechanism is descréd in
detail in Section 6.4.2.

When sending an end of a non-networked CTB over the network fdhe rst
time, the CTB must be made networked. Although no memory for th&€CTB needs
to be allocated (since it already exists), the infrastructure fothe new, implicitly
allocated, NCT to which the CTB will belong still needs to be set p. In order to do
this, pony's protocol-decoder (described in Section 7.5) needs tarmxct the necessary
information about the structure of the channel-type from itstype-descriptor. The
mechanism for making a non-networked CTB networked when nessary is described
in detail in Section 6.3.2.

The third case where type-descriptors are needed is when an eoidan NCT
arrives on a node for the rst time. In this case, pny's protocol-encoder (described
in Section 7.6) needs to allocate a new networked CTB and set tge infrastructure
for the NCT on the node where the end arrives. This mechanism is slar to the
mechanism used for explicit allocation by the allocation prasses, and likewise needs
to access the information stored in the type-descriptor.

When a CTB becomes (explicitly or implicitly) networked, a se of protocol-
converters (one protocol-decoder and one protocol-encodare started for each chan-
nel of the CTB. Both the decoder and the encoder have access toetprotocol-
descriptor of the channel they serve. By "protocol-descriptor’ we mean éhtype-
descriptor of a channel, which describes the protocol carridey the channel. It is
part of the type-descriptor of the channel-type to which the lsannel belongs. For
channels carrying channel-type-ends, the protocol-desdap of the channel contains

a pointer to the type-descriptor of the channel-type to whichhe carried end belongs.

CHAPTER 6. STRUCTURE OF P ONY i

To access a type-descriptor when a CTB is being made networkdte decoder
uses the pointer stored in that CTB. When the encoder needs to @ss a type-
descriptor in order to allocate the CTB for a newly arriving NCTFend, it uses the

pointer stored in the protocol-descriptor of the channel it sees®

6.3.2 The Claim/Release Mechanism

The network-hook, the state- eld and the state-semaphore areegessary for the cor-
rect handling of claiming and releasing shared ends of netwerk CTBs, as well as
for making a CTB networked during an implicit allocation. Intraditional CTBs, the
claiming or releasing of a shared end is implemented as a claimrelease of the re-
spective semaphore in the CTB. In networked CTBs, the compilerdditionally needs
to inform the pony kernel about the claim or release request. This is done viadh
network-hook

For each networked CTB on a node, the relevant CTB-handler hds the server-
end of anetwork-hook-handlevhich contains two channels: one for the client-end and
one for the server-end of the CTB. When the respective end is itteed or released,
a claim or release signal is sent to the CTB-handler via the cogechannel in the
network-hook-handle. The CTB-handler will read from the cannel using an extended
rendezvous, which will be released when the claim has been ated, respectively,
when the release operation has been completed. This is impaort especially for the
claim | as soon as the handshake for the claim signal has been comeped, KRoC
knows that the end is now claimed in the pny application, i.e. our node is the only
one allowed to use the end. Thus, KBC may now access the CTB's channel-words.
It is important to note the two-step approach here. When the edh of a networked

CTB is claimed, rst the client- or server-semaphore is claimeds usual. Once that

6The decoder might as well use the type-descriptor pointer stored in the protocol-desgpior of
the channel it serves, since it is identical to the pointer stored in the CTB that is to be made
networked. Using the pointer in the CTB simpli es the implementation, however.

CHAPTER 6. STRUCTURE OF P ONY 78

claim has been accepted, the claim signal is sent over the netihook. For a release,
rst the network-hook signal is sent, then the client- or servesemaphore is released.

The network-hook pointer in a networked CTB "hooks' into the etwork-hook-
handle, which means that it points to the base of its channelavds. Using this
mechanism, the network-hook pointer in the CTB replaces thelient-end of the
network-hook. During the lifetime of a networked CTB, the réerence-count of its
network-hook-handle is therefore 1, which means that the tveork-hook-handle will
automatically get deallocated when the pny kernel is shut down and the server-end
of the network-hook-handle goes out of scope. Details are givin Section 6.3.3.

For non-networked CTBs in a pny-enabled program, the network-hook pointer is
null. To nd out whether a p ony-enabled CTB is networked or not, its network-hook
pointer is checked for nullness.

There are two purposes for thestate- eld in a pony-enabled CTB | one for
non-networked and one for networked CTBs. While the CTB is nenetworked, its
state- eld contains the state of the CTB's ends. More preciselyf stores for both the
client-end and the server-end whether they are unshared or skdr and, if an end is
shared, whether it is currently claimed or not. This informaiton is necessary when
an end of a non-networked CTB is sent to another node for the rstime and the
CTB becomes networked in the process.

For each NCT in a pony application, the relevant NCT-handler on the master
node keeps track, for both the client-end and the server-endf whether they are
currently claimed, and if so, on which node they are claimed. Kén a claim or
release signal for the end of a CTB comes in via the network-hqdake CTB-handler
noti es the NCT-handler on the master node, which then updateshe current state
of the respective NCT. This involves queueing claim requests §everal nodes try to
claim the same end of the NCT) until they get served. In order forhis mechanism
to work properly, it is vital that the NCT-handler always clearly knows which nodes
have requested claims, and which nodes currently hold a clairfgr all NCT-ends

across the application.

CHAPTER 6. STRUCTURE OF P ONY 79

When an NCT gets allocated explicitly, it always starts with bah of its ends
unclaimed. For implicit allocation, this is not necessarily lhe case. As a reminder:
implicit allocation happens when an end of a currently nongtworked CTB is sent
to another node for the rst time. At the point in time when this happens, either
or both ends of the CTB may be claimed. This applies to the oppte end, but
also to the end that is currently being sent. In the latter case,ite end variable that
Is to be sent is an auto-clone of the claimed variable (cf. Sem 1.5.3). When a
non-networked CTB becomes networked,qmy uses the state- eld to nd out about
the current unshared/shared claimed/released state of the CTB'ends so that the
(implicitly allocated) NCT can start its life in a clearly de n ed state.

Once a CTB is networked, it will stay networked for the rest of i$ lifetime. Hence
keeping track of the unshared/shared claimed/released state the state- eld is only
relevant for non-networked CTBs. For networked CTBs, this hasio signi cance
anymore, since once a CTB becomes networked (which for CTBsldreging to an
explicitly allocated NCT is right from the start), the pony environment will keep
track of whether an end is claimed or not by using the networkdok mechanism.

For networked CTBs, the state- eld instead stores the ID of the NCTto which
the CTB belongs. This information is needed when ends of thatT® are being sent
over the network. During an implicit allocation, what is stoed in the state- eld is
“swapped'. As mentioned before, this happens when a non-netiwed CTB becomes
networked, i.e. when one of its ends is sent over the networkr fihe rst time. For
explicitly allocated NCTs, their CTBs start their life being networked straight away,
therefore their state- eld stores the NCT-ID right from the start.

Algorithm 6.1 shows the compiler mechanism for claiming and edsing ends
of a CTB in a pony-enabled program. Thestate-semaphordas used to protect the
state- eld. This is necessary in order to prevent race hazardsetween the update
of the state- eld for non-networked CTBs and the readout of tle state- eld during

an implicit allocation. Every time an end of a CTB is being senbver a networked

CHAPTER 6. STRUCTURE OF P ONY 80

channel, the protocol-decoder serving that networked channel chexkvhether the
CTB that is sent over the networked channel is already netwodd or not. In the
latter case, the CTB is made networked and a new NCT for the CTB isallocated

implicitly. This mechanism is shown in Algorithm 6.28

Algorithm 6.1: Claiming/releasing ends of a pny-enabled CTB

SEQ
In case of a claim: claim client- resp. server-semaphore now
Claim state-semaphore

IF
CTB is non-networked (i.e. network-hook is null)
SEQ
Update the state-field (depending on whether we are
claiming/releasing a client/server)
Release state-semaphore
TRUE -- i.e. CTB is networked (network-hook <> null)
SEQ
Release state-semaphore
Send relevant claim or release signal over the client
or server channel of the network-hook
Don't change the state-field (it contains the NCT-ID)
In case of a release: release client- resp. server-semap hore now

An important characteristic in Algorithm 6.1 is that for non-networked CTBs,
the state-semaphore is releasedfter the state- eld has been updated, whereas for
networked CTBs, the state-semaphore is releasdforethe claim/release signal is
sent over the relevant network-hook channel. The latter is tal in order to avoid
race conditions between a client-claim and a server-clainy, lsetween a claim and the
check in Algorithm 6.2. As pointed out above, the handshake fohe claim signal
over the network-hook is not released until the claim has beatcepted. Therefore,
it is vital that the state-semaphore is releasedeforea claim signal is sent over the
network-hook, because otherwise a pending claim might blodke possibility to claim
the other end of the CTB, or to send an end of the CTB over a netwked channel.

"In pony, all networked channels are part of an NCT.

8These algorithms are in a pseudaccam notation and not actually implemented in occamp.
Algorithm 6.1 is implemented directly in the compiler; Algorithm 6.2 is part of the protocol-decoder,
which is implemented as a CIF process.

CHAPTER 6. STRUCTURE OF P ONY 81

Algorithm 6.2: Making a CTB networked when necessary

SEQ
Claim state-semaphore

IF
CTB is non-networked (i.e. network-hook is null)
SEQ
Check state of client and server in state-field
Notify pony kernel about client- and server-state and
everything necessary for an implicit allocation
Wait for pony kernel to implicitly allocate a new NCT
for the CTB
Get NCT-ID, client-end of network-hook-handle and
handles for the protocol-converters from pony kernel
Store NCT-ID in state-field
Set up network-hook pointer with channel-words in
network-hook-handle
Decrease reference-count of network-hook-handle
... Fork off protocol-converters for all channels in the CTB
TRUE -- i.e. CTB is networked (hetwork-hook <> null)
SKIP
Release state-semaphore

6.3.3 Shutting Down pony-enabled CTBs

Contrary to non-networked CTBs, when the reference-count ai networked CTB
reaches zero, the CTB's memory isot freed. Algorithm 6.3 shows the modied
reference-count check that is made by the compiler after theeference-count of a

CTB has been decreased.

Algorithm 6.3: Reference-count check for aqmy-enabled CTB

SEQ
The CTB's reference-count has just been decreased

IF
(Reference-count = 0) AND
(CTB is non-networked (i.e. network-hook is null))
Deallocate CTB
TRUE
SKIP

The reason for keeping networked CTBs with a reference-countt zero in place is

that when a new end of the NCT to which the CTB belongs is allocatd explicitly,

CHAPTER 6. STRUCTURE OF P ONY 82

or when another end of that NCT arrives on our node, we can re-ugieat CTB as
well as its infrastructure (including the protocol-converers).

When a new end of an NCT comes into existence (by explicit allowan or by
arriving over a networked channel) on a node where there ady is a networked CTB
for that NCT, no allocation needs to be done. In such a case, simplye reference-
count of the CTB is increased. This also applies to CTBs whose eeénce-count is
currently zero (for instance because all ends of the NCT to whidhe CTB belongs
have left our node earlier). When a new end for such a CTB comeagd existence on
our node, pny (more speci cally, the allocation process resp. the encodencreases
the reference-count of the CTB | to 1 in this case.

The deallocation of networked CTBs is done as part of thegpy shutdown pro-
cess. As discussed in Section 3.2, the shutdown process may only bledafter all
usage of networked (or possibly networked) channel-type-endnables has nished.
Therefore, it is safe now to deallocate networked CTBs, becauseither the user-level
code nor the pny kernel will access them anymore.

The shutdown process tells the gny kernel to shut down, which in turn will shut
down all its components. After this has happened, theqmy kernel returns an array
that contains the pointers to all networked CTBs on the node.At this point, the
reference-count of those CTBs matches exactly the number ofds of the particular
CTB that are in scope within the user-level code (as it would bef non-pony-enabled
occamp programs).

If we consider the typical structure of a pny node shown in Algorithm 3.1, it
emerges that if all possibly networked channel-type-ends adeclared right before (or
inside) the FORKIN®Ilock, obviously, all their reference-counts would be zenwow.
However, possibly networked channel-type-end variables magfe been declared else-
where by the user-level code | even right at the start of the progam for instance.
In that case, some of the networked CTBs would have referencedots greater than

Zero now.

CHAPTER 6. STRUCTURE OF P ONY 83

The pony shutdown process now calls an auxiliary C functidh which is given
the array of pointers to networked CTBs that was returned by he pony kernel. The

auxiliary function performs Algorithm 6.4 for each networkd CTB.

Algorithm 6.4: Shutdown of a networked CTB
IF

Reference-count = 0
Deallocate CTB
TRUE
SEQ
Set network-hook pointer in CTB to null
(thus making it look non-networked)
Don't deallocate the CTB

After the pony shutdown process has nished, all networked CTBs with a
reference-count of zero have been deallocated. The formganketworked CTBs which
still have ends in scope, and whose reference-count is still gegathan zero, will be
deallocated automatically by the normal compiler mechanisrtsee Algorithm 6.3) as
soon as their last end goes out of scope.

Please note that in Algorithm 6.4 we use the term "making ook non-networked'
rather than “making it non-networked' because the only poinin setting the network-
hook pointer to null is to “fool' the reference-count checlkniAlgorithm 6.3, so that
it will deallocate the CTB when the reference-count reache=ero. The CTB isnot a
"normal’ non-networked CTB, since the state- eld still contans the NCT-ID and not
the unshared/shared claimed/released state of its ends as foormal' non-networked
CTBs. This is not a problem, however, since, as mentioned beéothe ends of those
formerly networked CTBs are not allowed to be used anymore awgy, hence it is
irrelevant what is stored in the state- eld. The only thing that will still happen to

those CTBs is their deallocation when their last end goes out stope.

9This function, as well as the other auxiliary C functions mentioned in this thesis, have largely
been implemented by Fred Barnes from the University of Kent.

CHAPTER 6. STRUCTURE OF P ONY 84
6.4 The Main pony Kernel

6.4.1 Layout and Startup

As discussed earlier, user-level processes communicate with tloaypkernel via the
network-handle, the error-handle and the message-handle p@icable. While the
server-ends of the latter two are held by the error-handler ahthe message-handler
respectively, the server-end of the network-handle is heldrdctly by the main pony
kernel.

During the startup of the pony environment (cf. Section 10.4), the main kernel
starts o its various subcomponents, namely the error-handletthe message-handler
and the various managers as the case may be. Then it waits foguests via the
network-handle. These may be requests for the explicit alloitan of NCT-ends, or
the request to shut down the pny environment. The implementation of the explicit

allocation is discussed in Section 6.4.2, the shutdown mechanigmSection 10.5.

6.4.2 Explicit Allocation of NCT-ends

When a user-level process wants to allocate a new NCT-end, it weeto call one
of pony's allocation processes (cf. Section 3.1.1). The rst thinghe allocation pro-
cess does is checking whether the NCT-name is an empty string.thfs is the case,
the allocation process terminates returning an error. Otharise, it calls an auxil-
lary C function that extracts the following information from the type-descriptor of
the channel-type (which the auxiliary function can access &ithe hidden parameter

discussed in Section 1.5.6):

The number of channels in the channel-type.

The number of reading-ends in the channel-type from the pdimf view of its

server-end | henceforth called “readers-in-server'.

CHAPTER 6. STRUCTURE OF P ONY 85

The type-hashof the channel. This is calculated by the compiler for each
channel-type that is declared on a node. The type-hash is daeto unique
for each channel-type, since although duplicate type-hashase theoretically

possible, chances for them to occur are vanishingly small.

Now the allocation process requests the explicit allocationdm the main pony kernel
via the network-handle. Doing this, it gives the following iformation to the main

kernel:

The direction-type of the end that is to be allocated, i.e. whether the end is a

client-end or a server-end.

The share-type of the end that is to be allocated. This may be nghared' or

“shared'.

The share-type of the opposite end. As discussed in Section 3.1Histmay be

“unknown’, “unshared' or “shared'.
The number of channels.

The number of readers-in-server.
The type-hash of the channel-type.

The NCT-name under which the end is to be allocated.

The main kernel now forwards all this information, except te number of channels
and the number of readers-in-server, to the NCT-manager on theaster node. This
is done by rst passing the message (via the corresponding link-hde) to the link-
handler that holds the link to the master | henceforth called "master-link-handler'
| which then passes it on to the master node via its link.

Then the main kernel waits for a reply from the NCT-manager. Tis will come
via the link from the master node. When getting the reply, the raster-link-handler

passes it on to the main kernel via th&ernel-reply-handle The reply may either be

CHAPTER 6. STRUCTURE OF P ONY 86

an error or a con rmation. An error would be returned to the albcation process,
which would then return it to the user-level process through & result parameter.

If a con rmation arrives from the NCT-manager, it comes togeter with the 1D
of the NCT to which the NCT-name belongs. For the NCT-manager, tls may have
been a new or an existing NCT, depending on whether the given NGQ¥ame was used
before to allocate an NCT-end somewhere across theng application.’® If the NCT
is new, the NCT-manager has forked o a new NCT-handler for it. & the main
kernel, it is irrelevant whether the NCT is new or not; the onlything that matters is
that the NCT-manager has returned the NCT's ID.

The main kernel now requests the allocation of a new channgipte-end for that
NCT-ID from the CTB-manager. This is done via the CTB-managehandle. There
are now two possible replies from the CTB-manager. If there &iady is a CTB
for the NCT with the given ID on our node, the CTB-manager will €ll the main
kernel that no new CTB needs to be allocated but just the refenee-count of the
existing CTB must be increased. Together with this message, the Bfmanager gives
the main kernel the pointer to the CTB | henceforth called "CT B-pointer'.1! The
main kernel then passes this information on to the allocationrpcess, which in turn
calls an auxiliary C function that increases the CTB's refemce-count and returns
a channel-type-end pointing to the CTB. This channel-typeend is then returned to
the user-level process by the allocation process.

If there is no CTB for the NCT with the given ID on our node yet, the CTB-
manager tells the main kernel to allocate a new CTB. The maineknel then noti es
the CTB-manager about the number of channels and the numbef readers-in-server
in the CTB that is to be allocated. The CTB-manager now alloctes a set of handles

and returns the following (client-ends of the) handles to th main kernel:

10The NCT-manager uses the type-hash to ensure that only NCT-ends of the same type are
allocated under the same NCT-name.
n the occamp context, the CTB-pointer is not the actual pointer, but its integer value.

CHAPTER 6. STRUCTURE OF P ONY 87

A network-hook-handle.
An array of decode-handle$ henceforth called “"decode-handle-array'.
An array of encode-handle$ henceforth called “encode-handle-array'.

The handles in the two arrays will be used by the protocol-coevters to communicate
with the decode-handlers and encode-handlers. The size of theays equals the
number of channels in the CTB. The main kernel now tells the Elcation process
that a new CTB must be allocated, and passes the NCT-ID, the netwkthook-handle
and the two arrays to the allocation process. The allocation pcess then calls an

auxiliary C function that does the following:
Allocate a new CTB according to the type-descriptor.
Initialise the reference-count to 1.
Store the type-descriptor pointer in the CTB.
Initialise the client-, server- and state-semaphores.
Store the NCT-ID in the state- eld.

Set up the network-hook pointer with the channel-words in te network-hook-

handle.
Decrease the reference-count of the network-hook-handle.

Fork o a protocol-decoder and a protocol-encoder for eacthannel-word in the
CTB.

For each channel-word in the CTB,both a decoder and an encoder must be started.
This is necessary because every channel may be used in both dioe | depend-
ing on whether the client-end or the server-end of the NCT are aimed on our
node (which may change dynamically). This, obviously, appléeto both readers-in-

server and writers-in-server (the latter being channels thatdve their writing-end in

CHAPTER 6. STRUCTURE OF P ONY 88

the server-end of the channel-type, accordingly). The protoml-converters are given
the channel-word, the protocol-descriptor of the channel,na the correct decode- or
encode-handle from the arrays as parameters.

The CTB-handler, which will be holding the server-ends of thelecode- and
encode-handles, needs to know which of them are connected totpcol-converters
serving readers-in-server, and which of them are connected toofocol-converters
serving writers-in-server. This is necessary so that the channets the CTB can
always be used in the correct direction, both when the cliednd and when the
server-end of the NCT are claimed on our node. Therefore, theder of the handles
in the decode- and encode-handle-arrays is vital.

The rule for the order of the handles is that both arrays conia rst the handles
for the readers-in-server, then the handles for the writers-igerver, and that the same
index in the arrays refers to the handles for the same channgbrd. The auxiliary
function must obey this rule when forking o the protocol-cowerters for the channels
in the CTB. Please note that the actual order of the channelg the CTB itself is
irrelevant for the CTB-handler. The CTB-handler only needsto know how many
readers-in-server there are in the CTB in order to distinguish Iheeen the handles
for readers-in-server (at the beginning of the arrays) and theandles for writers-in-
server (at the end of the arrays).

With this rule, the CTB-handler knows that if the client-end of the NCT is claimed
on our node, the handles at the beginning of the arrays are usleglprotocol-converters
serving channels to which the user-level-process writes, ancethandles at the end
of the arrays are used by protocol-converters serving chansdtom which the user-
level-process reads. If the server-end of the NCT is claimed orr owwde, it is exactly
the other way round.

The auxiliary function returns the newly allocated channetype-end and its CTB-
pointer to the allocation process. The allocation process thgrasses the CTB-pointer
on to the main pony kernel and terminates, returning the newly allocated charel-

type-end to the user-level process. The main kernel now passes D€B-pointer

CHAPTER 6. STRUCTURE OF P ONY 89

on to the CTB-manager, which stores it and forks o a new CTB-hadler for the
newly allocated CTB. The CTB-handler for its part forks o a decode-handler and
an encode-handler for each channel in the CTB.

CTB-handlers do not distinguish between unshared and shared endl'hey always
treat both ends of the CTB as if they were shared. Unshared endseaclaimed and
released by the pny environment internally if applicable. They are claimed when
they are allocated explicitly or when they arrive on our nodgia a networked channel;
they are released when they are sent to a remote node over a netea channel.

Internal claim and release messages are sent viadCaB-claim-handle For each
CTB-handler, there are two CTB-claim-handles | one for the client-end and one for
the server-end. If the newly allocated NCT-end was unshared (rmoatter whether
a new CTB was allocated or an existing CTB's reference-counta increased), the
main kernel now requests the CTB-claim-handle for the newlyllacated end from the
CTB-manager, and uses it to send a claim signal to the end's CTBahdler. In this

way, the newly allocated end gets internally claimed.

Chapter 7

Protocol-conversion

Figure 7.1 shows the pny components related to protocol-conversion that are dis-

cussed in this chapter.

decode-
reply-handle

protocol-| | decode- decode- internal
decoder handle handler decode-handle
protocol-| | encode- encode- internal
encoder handle handler encode-handle

Figure 7.1: ppony components related to protocol-conversion

7.1 The Protocol-converters

The protocol-converters are the interface between the uskvel process and the gny
environment (or, more speci cally, the decode-handler andhe encode-handler dis-
cussed in Section 7.8). As introduced above, they are used withtwerked channels
to convert any given user-level protocol into a special protot understood by the
pony kernel, and back.

pony's protocol-converters were implemented in C as CIF prosses by Adam

Sampson from the University of Kent. They are an extended versiaof the generic

90

CHAPTER 7. PROTOCOL-CONVERSION 91

‘DECODE.CHANNIEH 'ENCODE.CHANNIEAcesses presented in [SBWO03]. They are
more complex, however, since they need to cope with channgbé-ends as well,
rather than just with data-items as the old generic versions.

One reason for implementing the protocol-converters as CIFgcesses was that
they need to be able to fork o other protocol-converters | something not possible for
a generic process created directly by the compiler. Additioflg, implementing them
in C allows a greater exibility than the generic implementaion did. Implementing
the protocol-converters inoccamp itself was not an option because the low-level
manipulations of channels and CTBs needed cannot be donedncamp.

For each channel-word in a networked CTB, there areotha protocol-decoder and
a protocol-encoder. These are forked o when the CTB becomestworked. This
happens either during explicit allocation (cf. Section 6.2) or inside other protocol-
converters. The latter can happen either when an end of a prewsly non-networked
CTB is sent over a networked channel and the CTB becomes netied in the process
(this is handled by the decoder), or when an end of an NCT arrigeon a node where
there is no CTB for this NCT yet (this is handled by the encoder)

7.2 Levels of Communication

The term "‘communication' generally refers to amccamp communication (using the
1" and ?' notations in the source code), but is too general for the pugse of
describing the functionality of the protocol-converters, at the pony environment in
general. Therefore, we distinguish between three di erentVels of communication.
A user-level communication (ULC)is the entire communication carried by an

occamp channel, i.e. everything noted after the!™ or the "?". So, for instance:

clxy z

CHAPTER 7. PROTOCOL-CONVERSION 92

would be one ULC. A ULC therefore comprises the entire user-levatotocol as de-
scribed in the protocol-descriptor for the channel (which isgrt of the type-descriptor
of the channel-type to which the channel belongs).

A compiler-level communication (CLC)is anactual communication on a channel-
word. For instance, a ULC carrying a sequential protocol consistf several CLCs.

A network-level communication (NLC)is a communication between the protocol-
decoder and the decode-handler, or between the encode-Handnd the protocol-
encoder. It is important to note that an NLC is a theoretical caistruct describing an
atomic unit of information exchange between the protocolenverters and the rest of
the pony environment. An NLC is not measuring the actual number obccamp com-
munications between the protocol-converters and theopy kernel, since one NLC may
be implemented as severabccamp communications between decoder and decode-
handler or encode-handler and encoder respectively.

We distinguish between NLCs for data-items and NLCs for channglpe-ends.
Data-item NLCs carry an address/size pair, as in the earlieDECODE.CHANNIED
"ENCODE.CHANNEBWO03]. These are the address and size (in bytes) of a piece of
data that is to be sent from one node to another. Typically, tt8 would be the address
and size of the data-item itself, although some data-items magquire a more com-
plex implementation; see below. For most purposes, a CLC can becdded as one
NLC. Some data-items require more than one NLC per CLC; other sas allow the
decoding of more than one CLC in a single NLC. Details about thenplementation
of the decoding and encoding abccamp'’s various data-item protocols are given in
Section 7.7.1. Channel-type-end NLCs are implemented as sipésequences of com-
munications between the protocol-converters and theopy kernel; see Section 7.7.2

for details.

CHAPTER 7. PROTOCOL-CONVERSION 93

7.3 Implementation of the Protocol-converters

When a user-level process sends something along a networked olehrnthe decoder
takes the rst CLC of the ULC as an extended input, i.e. the userdvel process is
not released until the decoder speci cally releases it. The dmder can now calculate
how many data-item NLCs and how many channel-type-end NLCs the are for the
rst CLC. ! The convention for counting the NLCs is that for data-item NLCs,each
address/size pair is counted as one NLC. For channel-type-end N§Ghe sequence of
communications between the protocol-converters and theopy kernel that deals with
onechannel-type-end is counted asneNLC, i.e. each channel-type-end is equivalent
to one channel-type-end NLC.

The decoder passes the number of NLCs in the rst CLC, together wita Boolean
ag telling whether there are any ‘remaining' CLCs in the ULC {.e. CLCs that will
follow the rst one), to the pony kernel, followed by the NLCs of the rst CLC
themselves. The pny kernel sends the rst CLC, together with the information just
mentioned, to the receiving node, where it gets passed to thegpocol-encoder. If the
remote protocol-encoder is able to output the rst CLC of the UIC to the remote
user-level process, an acknowledgement is sent back to the segdinde. In this case,
the procedure can be repeated for the ‘remaining’ CLCs of thél C if there are any.
Since the remote user-level process is how committed to takeetlentire ULC, the
pony kernel can send the ‘remaining' CLCs to the receiving node bne go. Again,
the ‘remaining' CLCs are preceded by the number of data-iteMLCs and the number
of channel-type-end NLCs in thenf. When they have been taken by the user-level
process on the receiving node, this again gets acknowledgédter having received

this acknowledgement (or the acknowledgement for the rst CC in case there are

LCurrently, no protocols are implemented in the protocol-converters where a singl CLC would
need to be decoded as a mixture of data-item NLCs and channel-type-end NLCs, or even as neor
than one channel-type-end NLC. Nevertheless, the pny kernel is able to cope with such protocols
for future uses.

2The “remaining' CLCs may obviously contain mixtures of NLCs, or severalchannel-type-end
NLCs, since there may be more than one ‘remaining' CLC (for instance in a sequéal protocol).

CHAPTER 7. PROTOCOL-CONVERSION 94

no ‘remaining' CLCs), the decoder knows that the ULC has beenkan completely
by the remote user-level process, and can therefore now reledse $ending user-level

process from the extended rendezvous.

7.4 Cancelling Started ULCs

There are cases where the rst CLC of a ULC will not be taken by the ser-level
process on the remote node. This may happen if the remote NCTekgets released
on the remote node (in case it is shared), or if it gets moved ovametworked channel
to some other node (in case it is unshared). In the latter case, tmemote NCT-end
would get internally released by the pny environment, as discussed earlier.

In cases like these, started ULCs must beancelled There are two possibilities
now. Either the rst CLC of the started ULC has already reached tle encoder on the
receiving node, or not. For the decoder on the sending node,gldoes not matter.
It would in any case receive a cancel' message rather than th&maawledgement for
the rst CLC. When this happens, the decoder must cancel the stagd ULC, which
means that it must leave the outputting user-level process in thsame state as it
was before the ULC started. This speci cally means that the exteled input for the
rst CLC, which the decoder had started, is not released, and thaithe outputting
user-level process remains suspended.

After the cancel, the decoder gets deactivated until the opde end of the NCT
is available again | when it is claimed again somewhere in case is shared, or when
it arrives on the target node (and gets internally claimed thre) in case it is unshared.
Then the decoder gets activated again and restarts with the &nded input of the
rst CLC. The essential property of the cancel operation is thatwhen the decoder
gets activated the next time, it must be able to access the chaehword and perform
the decoding of the rst CLC as if the previous attempt (which las been cancelled)

had never happened in the rst place.

CHAPTER 7. PROTOCOL-CONVERSION 95

The second possibility is that the rst CLC of the started ULC has reahed the
encoder on the receiving node already when the “cancel-trgging' event happens. In
this case, the encoder is now attempting to output the rst CLC b the user-level
process | which will not take it. If this happens, the decoder that is connected to
the same channel-word as the outputting encoder (i.aeot the decoder on the sending
node, but the one on thereceivingnode) will get a "cancel-encode' message from the
pony kernel.

This decoder then inputs the rst CLC that the matching encode tries to out-
put. The decoder must undo all operations that the encoder prmed before out-
putting the CLC. This especially involves deallocating any eviously allocated mem-
ory (for dynamic mobiles) and decreasing any previously increed reference-counts
(for channel-type-ends). Then, the decoder releases the edepfrom the communi-
cation. Semantically, the "cancel-encode' operation beles like a user-level process
that reads the rst CLC of the ULC from the networked channel (ie. from the en-
coder), but then every variable it has just read goes out of scep

After the "cancel-encode’, everything must be in the same stats d the rst CLC
of the ULC had never reached the encoder in the rst place. If theancelled ULC
consists of more than one CLC, the gny kernel will then notify the encoder that the
ULC was cancelled, so that the encoder will not wait for the “reamning' CLCs of the
ULC anymore. If the ULC has just one CLC, it is irrelevant for the ecoder whether
the ULC was cancelled or not, because the rst CLC of the ULC is outg by the
encoder in any case | either to the matching decoder if the ULC iscancelled, or the

user-level process otherwise.

7.5 The Protocol-decoder

As mentioned above, the protocol-decoder may bactivated or deactivated It is
activated when the NCT-end which holds the writing-end of thechannel served by

the decoder is claimed (externally or internally) on our nog, and the opposite end is

CHAPTER 7. PROTOCOL-CONVERSION 96

claimed on another node. At all other times, the decoder is detavated. As discussed
above, the deactivation of the decoder may happen in the mitilof a started ULC,
in which case the ULC is cancelled. The decoder communicatesspthe decode-
handle with its decode-handler, which for its part commungtes over theinternal

decode-handlevith the CTB-handler that is responsible for the CTB which hold the
channel that is served by the decoder.

When the decoder starts its main loop, it waits for requests fro the decode-
handler. This may be an activation, a “cancel-encode' reggteor a shutdown signal.
The “cancel-encode’ operation was discussed in Section 7.€adly; pony's shutdown
mechanism will be explained in Section 10.5.

When a decoder gets activated by the decode-handler, AL over the user-level
channel and the incoming channel of the decode-handle. Frahre decode-handler, it
may get a "cancel' message, in which case the decoder is deatdtVand returns to
the main loop, after having sent a cancel con rmation back totte decode-handler.
From the user-level channel, the decoder may get the rst CLC & new ULC. This
would be taken by the decoder as an extended input.

After getting the rst CLC from the user-level process, the decoddries to output
the number of NLCs in the rst CLC to the decode-handlef In parallel to that, it
listens to the incoming channel of the decode-handle for a pdssi cancel’ message
from the decode-handler, as shown in Algorithm 7.1. This mechiam* is used instead
of an output guard, which does not exist inoccamp and CIF. The counterpart
mechanism in the decode-handler is shown in Algorithm 7.2.

Using this mechanism, the decode-handler may send a ‘cancel' mgssto the
decoder at any time before it has received the number of NLCs the rst CLC
(which starts the ULC) from the decoder. It will de nitely get a cancel con rmation,

but may get a started ULC beforehand | which it must ignore.

3The number of NLCs in the rst CLC is always accompanied by a Boolean ag telling whether
there are any ‘remaining' CLCs in the ULC (cf. Section 7.3). For simplicity, this Boolean ag will
not be mentioned separately below.

4Implemented in C like the rest of the decoder; the notation in the algorithm is pseudeoccam

CHAPTER 7. PROTOCOL-CONVERSION 97

Algorithm 7.1: Pseudo output guard mechanism used in the protocol-decoder

BOOL was.cancelled:
SEQ
CHAN BOOL cancel.sync:
PAR
SEQ
Send number of NLCs in first CLC to decode-handler
cancel.sync ! TRUE
ALT
Get ‘cancel' message from decode-handler
SEQ
BOOL any:
cancel.sync ? any
was.cancelled := TRUE
BOOL any:
cancel.sync ? any
was.cancelled := FALSE

IF
was.cancelled
SEQ
Cancel the started ULC and deactivate decoder
Send cancel confirmation to decode-handler
TRUE

Continue with ULC normally

If no “cancel' message comes in from the decode-handler duting mechanism in
Algorithm 7.1, the decoder will now output all NLCs of the rst CLC to the decode-
handler. Afterwards, the decoder waits for a reply from the dece-handler. This
may be an acknowledgement for the rst CLC, or a "cancel' messagggain, if it gets
a cancel' message, the decoder would perform the cancel opensand send a cancel
con rmation back to the decode-handler. In this case, howexethe decode-handler
can be sure that only a cancel con rmation can come from the deder, therefore no
complex mechanism as in Algorithm 7.2 is needed in the decodanller here.

If the rst CLC was acknowledged, the decoder can now do the negsary cleanup.
This involves deallocating the memory of dynamic mobiles #t were sent away, and
decreasing the reference-count of the CTBs for all channgipie-end NLCs in the rst

CLC. If there are ‘remaining' CLCs in the ULC, the decoder noweads them from

CHAPTER 7. PROTOCOL-CONVERSION 98

Algorithm 7.2: Counterpart to pseudo output guard in the decode-handler

SEQ
We need to cancel a started ULC
Send ‘cancel' message to decoder
Get CASE input from decoder
Cancel confirmation
SKIP
Number of NLCs in first CLC -- ignore!
Get ‘real' cancel confirmation from decoder

the user-level channel, again with an extended input (for theery last CLC). After
this is done, the decoder sends the number of NLCs in the ‘remiaig’ CLCs to the
decode-handler, followed by the NLCs themselves. They will dately be taken,
since the remote user-level process is now committed to take thatire ULC. The
decoder now waits for the acknowledgement from the decodartller; then it does
the cleanup after the ‘remaining’ CLCs. After having done thigleanup (or after the
cleanup for the rst CLC in case there are no ‘remaining' CLCs),he decoder releases

the user-level process from the extended rendezvous and resto the main loop.

CHAPTER 7. PROTOCOL-CONVERSION 99

7.6 The Protocol-encoder

The protocol-encoder is signi cantly simpler than the decodefor two main reasons.
Firstly, the encoder does not need to do any cancelling itself [started ULCs that the
encoder tries to output are cancelled by the matching decodeith the “cancel-encode’
operation. Secondly, the encoder does not need AT between messages from the
encode-handler and the user-level process | since d@gutputsto the user-level channel.
Therefore, we do not need to distinguish between activated ardkactivated states
for the encoder.

The encoder communicates over the encode-handle with itscexde-handler, which
for its part communicates over thanternal encode-handlevith the CTB-handler that
is responsible for the CTB which holds the channel that is servddy the encoder.
When the encoder starts its main loop, it waits for a request fra the encode-handler.
This may be either a shutdown signal (cf. Section 10.5 foropy's shutdown mecha-
nism) or the number of NLCs in the rst CLC of a new ULC. In the latter case, the
encoder would input all NLCs of the rst CLC from the encode-hadler and output
the rst CLC to the user-level channel. Once the rst CLC has beerntaken, the
encoder sends an acknowledgement to the encode-handler.

If there are ‘remaining’ CLCs in the ULC, the encoder then wast for the next
message from the encode-handler. If this is a "cancel' messalye gncoder now knows
that the rst ULC was not taken by the user-level process, but by thematching
decoder performing a "cancel-encode’. In this case, the ethendoes not need to wait
for the "‘remaining’ CLCs and may return to the main loop. The ther possibility is
that the encoder gets the number of NLCs in the ‘remaining' CLEfrom the encode-
handler. In this case, the encoder then inputs all NLCs of theemaining' CLCs from
the encode-handler and outputs all ‘remaining’ CLCs to theser-level channel. Once
they have been taken, the encoder sends an acknowledgementh® encode-handler.
After this is done (or after having sent the acknowledgement fdhe rst CLC in case

there are no ‘remaining' CLCs), the encoder returns to the mailoop.

CHAPTER 7. PROTOCOL-CONVERSION 100

Algorithm 7.3: Implementation of “cancel-encode’ operation in the decade

SEQ
We just got a “cancel-encode' request
ALT

Input first CLC that the matching encoder is sending
SEQ
Cancel that CLC
Release matching encoder from communication
-- Wait for acknowledgement that CLC was output by encoder
dec.handle[to.decoder] ? CASE cancel.encode.ack
-- Return confirmation
dec.handle[from.decoder] ! encode.cancelled
-- Acknowledgement that CLC was output by encoder
dec.handle[to.decoder] ? CASE cancel.encode.ack
-- Return confirmation
dec.handle[from.decoder] ! encode.not.cancelled

Algorithm 7.3 shows how the “cancel-encode' operation is ingphented in the
decoder. Regarding the "cancel-encode’ operation, the dde-handler behaves like an
‘invisible' intermediary between the CTB-handler and the deoder. It exchanges all
messages between the two, and behaves towards the CTB-handteexactly the same
way as the decoder would. Algorithm 7.4 shows how the "cancekede' operation is
initiated in the CTB-handler, and how the CTB-handler reacs.

This mechanism is necessary because the CTB-handler may get axtéenal or
internal) release signal for an NCT-end containing the readirgnd of a channeivhile
an output is pending in the encoder which serves that channelPending' here means
that the rst CLC has already been sent to the encoder (with the rcode-handler
as an intermediary), but no acknowledgement has come backtydn such a case,
the CTB-handler will initiate the “cancel-encode' operatin, but does not know yet
whether the rst CLC will actually be cancelled or whether theuser-level process had
already taken it when the release was triggered. The CTB-halet will only know
this after getting the reply from the decode-handler. Please note thatthere is more

than one CLC in the ULC, only the decoder performing the “cantencode' may have

CHAPTER 7. PROTOCOL-CONVERSION 101

Algorithm 7.4: Initiating "cancel-encode' operation in the CTB-handler

SEQ
We need to do a “cancel-encode' because of a release
(external or internal)
Send “cancel-encode' request to decode-handler
Wait for acknowledgement for first CLC from encode-hand ler
-- Send “cancel-encode' acknowledgement to decode-handle r
int.dec.handle.array[i][to.handler] ! cancel.encode.a ck
-- Get reply from decode-handler
int.dec.handle.array[i][from.handler] ? CASE
-- First CLC was cancelled
encode.cancelled
SEQ
Send “cancel' message to encode-handler
Pass ‘cancel' on to remote CTB-handler
-- First CLC was taken by user-level process
-~ (can only be the case if there are no ‘remaining’ CLCs)
encode.not.cancelled
SEQ
Send confirmation to encode-handler that output was suc cessful
Pass acknowledgement on to remote CTB-handler

taken the rst CLC. This is obvious from the fact that the "cancel-encode' operation
can only be triggered by a release | which cannot happen in the madle of a ULC.
The encode-handler must be noti ed whether the ULC was taken bihe user-level
process or not. This is necessary because if the output was succéstie encode-
handler needs to internally claim all unshared NCT-ends that @re output as part of

the ULC. If the ULC was cancelled, this is not the case.

CHAPTER 7. PROTOCOL-CONVERSION 102

7.7 Decoding and Encoding the Various opcBnatocols
The following occamp protocols are currently supported by the protocol-converts:

Regular (i.e. nonMOBILEsimple types:

INT16
INT32

INT64

BOOL

{

{

{

{

{ BYTE
{

{ REAL32

{ REAL64

Regular arrays (single- and multi-dimensional) of regular siple types.

Regular RECORI[Zontaining regular simple types or regular arrays or regula
RECORD

Regular arrays (single- and multi-dimensional) of requlaRECORD
MOBILEiIimple types.

Fixed-sizeMOBILERrrays (single- and multi-dimensional) of regular simple typse
or regular RECORD

MOBILE RECGRDntaining regular simple types or regular arrays or regula
RECORD

Dynamic MOBILErrays (single- and multi-dimensional) of regular simple type

or regular RECORD

CHAPTER 7. PROTOCOL-CONVERSION 103

Channel-type-ends.
Counted array PROTOCOL
SequentialPROTOCOf the above.

Tagged PROTOCOS the above.

The following occamp protocols are currently not supported by the protocol-

converters:

"MOBILE.CHABNdS.
NestedMOBILE such as:

MOBILErrays (xed-size or dynamic) ofMOBILEIimple types.
MOBILErrays (xed-size or dynamic) ofMOBILEarrays.

MOBILErrays (xed-size or dynamic) ofMOBILE RECGRD

~n A AN

MOBILErrays (xed-size or dynamic) of channel-type-ends or
"MOBILE.CHABNdS.

{ MOBILE RECGRDntaining MOBILEimple types.

{ MOBILE RECGRDntaining MOBILErrays.

{ MOBILE RECGRDntainingMOBILE RECGRD

{ MOBILE RECGRDntaining channel-type-ends oMOBILE.CHABNdS.

New occamp features such as:

{ MOBILE PRéxX3es.
{ MOBILE BARRKER

{ Arrays/ RECORDf these.

CHAPTER 7. PROTOCOL-CONVERSION 104

Some of the currently unsupported protocols are not yet fullworking in KRoC itself.
This applies especially to nested mobile types; the only nestedhiles that are fully
working at the moment are dynamic mobile arrays of dynamic nimle arrays ofBYTE
and dynamic mobile arrays of channel-type-ends. The abovstlitakes into account
the general rule on nested mobiles inoccamp, which says that \everything containing
a mobile must be mobile itself" | hence there are no "'mobiles-imon-mobiles' in the
above list of unsupported protocols, since they are not allowed occamp anyway.
For most of the currently unsupported protocols, supporting the in the future
will only require adapting the protocol-converters. Otherssuch as mobile processes
and mobile barriers, will require further adaptations in theinternal structure of the

pony kernel itself. Some thoughts on that are discussed in Sectiohi3.2.1 and 12.2.2.

7.7.1 Data-item NLCs

As mentioned above, data-item NLCs are address/size pairs, whiclneaexchanged
between the decoder and the decode-handler on the sending @odnd between the
encode-handler and the encoder on the receiving node. On tbending node, the
address may point to any place in memory that holds a piece of @awhich needs
to be sent to the receiving node. This may be the workspace or wespace of the
process, but also the static or dynamic mobilespace | depending owhat kind of

data the NLC actually decodes.

On the receiving node, data-item NLCs are address/size pairs agllv However,
no matter which user-level protocol is encoded, the address/sipair always refers to
a dynamic mobile array (of bytes) that wasdetachedby the encode-handler before
passing the NLC on to the encoder. This dynamic mobile array camns the relevant
data for the NLC, which was received from the network. The ende-handler uses the
generic DETACH.DYNM@8Bcess presented in [SBWO03] to detach a dynamic mobile

array and acquire its address and size:

PROC DETACH.DYNMOB (MOBILE [IBYTE dynmob, RESULT INSizajdr,

CHAPTER 7. PROTOCOL-CONVERSION 105

This process leaves the dynamic mobile array variable undesd (i.e. its size-slot set to
zero) and returns the address and size of the data in the array.h€ address returned
is the address of theactual data (in the dynamic mobilespace)not the address of
the array variable (which would be in the normal workspace). fiis mechanism is the
same as with the old genericENCODE.CHANNEbcess | which also had to be given

address/size pairs of detached dynamic mobile arrays.

Non-mobile Data-items

Regular, non-mobile, data-items are decoded as a single NLC iagth carries their
address (in workspace or vectorspace) and size. When the encodeeives an NLC
for a regular data-item from the pny kernel, it copies the relevant data from the
detached dynamic mobile array to the user-level channel. Om¢he data has been
taken, the encoder frees the memory that was held by the deteed array and returns

it to the free-list.

Sequential and Tagged Protocols

Sequential and tagged protocols are decoded as several NLCsnh® or more NLCs for
each CLC, i.e. for each item in the list. The individual items are treated in the same
way as if they were the only CLC of the ULC. This applies to all tpes supported by
pony, including mobile data-items and channel-type-ends, wike decoding/encoding
is discussed below.

This means that the number of NLCs in the rst CLC equals the numier of NLCs
for the rst item in the list. The number of NLCs in the ‘remaining’ CLCs equals
the sum of the NLCs for all remaining items. A special case regardinhe number of
NLCs are counted array protocols; see below.

A special feature of decoding sequential protocols is that foegular (non-mobile)

data-items, the data is copied into a temporary piece of memgrand the address

5The tag of a tagged protocol counts as one item, decoded as one NLC.

CHAPTER 7. PROTOCOL-CONVERSION 106

of that temporary is used for the NLC,unlessthe data-item is the rst or the very
last CLC of the ULC. This is necessary because the data-item mighte been an
expression evaluated by the compiler that ended up on the stacknd in a sequential

protocol, the same stack address might be used several times. Fatance, this ULC:
chan!'i+1;i+2;i+ 3

would use the same stack address three times. For the rst and the la€iC (i.e.
i+ 1'and i + 3"), this would be no problem. The rst CLC is decoded, sent to the
remote node and acknowledged before the second CLC is beingdréy the decoder.
The ‘remaining’ CLCs, however, are sent to the remote node in @m@o. This means
that for the second and the third CLC, the same address (from the a&tk) would
be sent, which would result in the same value (namely + 3') being output to the
receiving user-level process for both of them.

Therefore, the data for all CLCs except the rst and the very Iat needs to be
copied, and the address of the copy then used for the NLC that is tme sent to the
remote node as part of the ‘remaining’' CLCs. The very last CLC eibusly does not
need to be copied since its stack address cannot be re-used by a sy=meat CLC.
This means that for non-sequential protocols, as well as seqtiahprotocols with
only two elements | which will be the bulk of communication in a typical pony
application | no copying is necessary. Also, no copying is necessafor mobile data,
since even if the data-item is the result of an evaluated expressi the compiler would
place the result into the relevant mobilespace before engagim the CLC, and not

communicate from the stack directly.

Counted Array Protocols

A counted array consists of two CLCs, one for the count and one fdhe array
data. According to the general rule for CLCs and NLCs, a countedray would
always have to be decoded as two NLCs, namely one for each CLCr performance

reasons, however, it is desirable to decode a counted array asragkg NLC | which

CHAPTER 7. PROTOCOL-CONVERSION 107

can be done as long as both CLCs of the counted array are parttbe remaining’
CLCs. In this case, the count is decoded implicitly in the size e array data, with

the count being the size of the array data divided by the size ohé base type of the
array.

If the ULC only consists of the counted array, or if the counted aay is at the
beginning of a sequential protocol, the count and the array da have to be decoded
in two separate NLCs. This is necessary in order to enable the ULC teelzancelled
if necessary. The decoder will only read the array data from theser-level process
after having received the acknowledgement from the remote@der that the remote
user-level process has taken the count; otherwise the ULC is calted as described in
Section 7.4. Therefore, the CLC containing the count has toebdecoded separately,
in the same way as an individual data-item of the count type (g. INT or BYTEwould
be decoded.

A special case is a count of zero. K& has a built-in optimisation which works
in such a way that if the count of a counted array happens to be mg no CLC takes
place for the array data anymore. For pny, this means that if the counted array is
at the beginning of a ULC, only the count (of zero) is decodedf hothing follows the
counted array, the relevant ULC would contain no ‘remainingCLCs. If the counted
array is not at the beginning of the ULC, which means that the aant is part of the
‘remaining' CLCs, only the array data is decoded as describedave. In this case,
the size of the relevant NLC would be zero.

Algorithm 7.5% shows several examples of decoding counted arrays, varying e t
position of the counted array in the ULC, as well as the count beg zero or not.
‘chan' here stands for the user-level channel served by the decodsiirst.clc 'is
the message from the decoder to theopy kernel that contains the number of data-
item NLCs and channel-type-end NLCs in the rst CLC, as well as aag indicating

whether there are any ‘remaining' CLCs in the ULC.rest.clcs ' is the message

SpPlease note that this is not an “algorithm' in the proper sense of the word, but acollection of
examples.

CHAPTER 7. PROTOCOL-CONVERSION 108

from the decoder that contains the number of data-item NLCs ahchannel-type-end
NLCs in the ‘remaining' CLCs.
The encoding of a counted array is done by copying, since bothet count and the

array data are regular (non-mobile) data.

Static Mobiles

Static mobiles are normally communicated in KIRC using pointer-swapping. Both
the source and the target variable are pointers to pre-allotad pieces of memory
located in the static mobilespace of th@ccamp program. When a communication
between two static mobile variables takes place, their poiets are swapped, and the
source variable is treated as unde ned afterwards. Decodingstatic mobile variable
does not involve pointer-swapping. Instead, the protocol-deder simply uses the
address and size of the data (in mobilespace) for the NLC that is foe sent to the
remote node, and leaves the pointer of the variable uncharthe After the CLC is
completed, the source variable is left unde ned as usual.

Encoding a static mobile is done using pointer-swapping, i.ehé user-level pro-
cess will not notice any di erence from a non-networked commication. Inside the
encoder, the operation is more complex, however, since theceder must be able to
encode static mobiles o&ny type, whose size it does not know until the relevant NLC
arrives from the network. Therefore, the encoder uses a spegaol of memory. This
pool is shared by all encoders across the entirerny-enabled program.

When an NLC for a static mobile data-item arrives in the encoderthe encoder
browses the static mobile pool for a piece of memory of the redet size. If there
is a piece of memory of that size, it is taken out of the pool; odmwise the encoder
allocates a piece of memory of the relevant size from tldnamic mobilespace. The
data from the detached array is then copied into the memory &m the pool (resp.
the newly allocated memory), after which the memory that wakeld by the detached

array is freed and returned to the free-list. Then the memoryrém the pool is used

CHAPTER 7. PROTOCOL-CONVERSION

109

Algorithm 7.5: Several examples of decoding counted arrays

* chan ! O:array
first.clc; 1; 0; FALSE -- the count (= 0)

chan ! O:array; an.integer
first.clc; 1; 0; TRUE -- the count (= 0)
rest.clcs; 1; O -- the “an.integer'

chan ! count.greater.than.zero::array
first.clc; 1; 0; TRUE -- the count
rest.clcs; 1; O -- the array

chan ! count.greater.than.zero::array; an.integer
first.clc; 1; 0; TRUE -- the count
rest.clcs; 2; 0 -- the array, the “an.integer'

chan ! a.byte; O:.array
first.clc; 1; 0; TRUE -- the “a.byte'
rest.clcs; 1; O -- the array (of size 0)
-- [no count sent since count is implicit]

chan ! a.byte; O::array; an.integer

first.clc; 1; 0; TRUE -- the “a.byte'

rest.clcs; 2; 0 -- the array (of size 0)
-- [no count sent since count is implicit]
-- the “an.integer'

chan ! a.byte; count.greater.than.zero::array
first.clc; 1; 0; TRUE -- the “a.byte'
rest.clcs; 1; O -- the array (of size > 0)
-- [no count sent since count is implicit]

chan ! a.byte; count.greater.than.zero::array; an.inte ger
first.clc; 1; 0; TRUE -- the “a.byte'
rest.clcs; 2; 0 -- the array (of size > 0)

-- [no count sent since count is implicit]
-- the “an.integer'

CHAPTER 7. PROTOCOL-CONVERSION 110

for an ordinary mobile output operation; the user-level proess takes the static mobile
by performing the normal pointer-swap.

After the output operation has been completed, i.e. after th@ointers have been
swapped, the encoder returns the piece of memory whose pointejust received
from the user-level process to the static mobile pool. Using thisathanism, the
pool, which is initially empty, grows whenever a static mobd NLC of a new size
arrives from the network. The same applies if there has been agt mobile NLC of
that size before, but the relevant piece of memory from the pbes currently in use
by an encoder.

The items in the static mobile pool are never freed until the ograting system
automatically frees them anyway at the end of the gny-enabled program. This is
because the encoder does not know whether the pointer that westurned by the
user-level process during the swap points into the static or theydamic mobilespace.
The latter would be the case if the static mobile variable in theuser-level process
had been used for networked communication before. This meathat after a while,
the static mobile pool will typically contain pieces of memar from both the static
and the dynamic mobilespace. Accordingly, throughout the gny-enabled program,
there will be both static mobile variables pointing to the staic mobilespace and static
mobile variables pointing to the dynamic mobilespace.

Although the static mobile pool may appear ever-growing (andnerefore danger-
ous) at rst glance, this is not the case. Since the items in the wb are re-used
when possible, there is a saturation in the growth of the pool at some time. This
is because the longer the program runs, the more likely it gethdt the pool will
already contain a piece of memory of the size needed for a pauiar NLC | which
means that the likelihood of having to add a new item to the pdowill get smaller

and smaller.

CHAPTER 7. PROTOCOL-CONVERSION 111

Dynamic Mobile Arrays

Dynamic mobile arrays are allocated at runtime, i.e. their ge is not known to the
compiler. Dynamic mobile array variables are implementedsaln + 1) words in
workspace | one for the pointer to the array data (in the dynamic mobilespace),
and n words for the dimension counts, whera is the number of dimensions of the
array.

When decoding and encoding dynamic mobile arrays, the proteconverters dis-
tinguish between single- and multi-dimensional arrays. Singimensional arrays are
decoded as a single NLC containing the address and size of the wrdata (in the
dynamic mobilespace). The dimension count is decoded impligiin the size of the
array data. As for counted array protocols (see above), the dension count can be
calculated by dividing the size of the array data by the size oht base type of the ar-
ray. On the receiving node, the encoder stores the address oé ttietached dynamic
mobile array, as well as the calculated dimension count, in a&mporary dynamic
mobile array variable. This is then output to the user-level pcess.

Please note that no copying of array data is necessary here. Themory from
the detached array isnot freed, since it is now used by the user-level process. Only
the temporary dynamic mobile array variable is freed by thereoder after the output
to the user-level process has been completed. On the sending enoafter receiving
the acknowledgement, the decoder frees the memory of the smiidynamic mobile
array variable and returns it to the free-list. The dimension ount is set to zero, so
that the variable is now unde ned for the sending user-level picess.

Multi-dimensional dynamic mobile arrays are decoded as two NlIs. The rst
NLC contains the dimension counts of the source dynamic mobileray variable (with
the address pointing to the start of the dimension counts in wodpace). The second
NLC decodes the array data in the dynamic mobilespace as for sieglimensional
arrays. The encoder again uses a temporary dynamic mobile arrgariable, into

which it copies the dimension counts from the rst NLC, after wheh the memory

CHAPTER 7. PROTOCOL-CONVERSION 112

from the detached array of the rst NLC is freed and returned to he free-list. The
rest is the same as for single-dimensional arrays, i.e. the addresthe detached array

of the second NLC is stored in the temporary variable etc.

7.7.2 Channel-type-end NLCs

Making a Non-networked CTB Networked

When encountering a channel-type-end NLC, the decoder mustetk whether the
CTB is already networked, and make it networked if necessargeforeoutputting the
actual NLC to the decode-handler. This was described in Algohm 6.2. Since this
algorithm was presented relatively early in this thesis, certa details could not yet
be discussed. Therefore, Algorithm 7.6 contains a more detailddscription.

When the decode-handler gets the request from the decodernidti es the NCT-
manager on the master node. This is done through the master#utnandler, in the
same way as during an explicit allocation (cf. Section 6.4.2Y he following informa-

tion is passed to the NCT-manager:

The NCT-ID and channel-ID of the decode-handler making the request. The
channel-ID is the ID of the channel in the CTB. The correspondyg index in

the decode-handle-array is used as the channel-ID.

A Boolean ag indicating whether the client-end of the CTB iscurrently claimed
on our node. This is true if the client-end is shared and clairde or if it is

unshared. In the latter case, it is treated as being internallglaimed.

A Boolean ag indicating whether the server-end of the CTB is arrently

claimed on our node.

Unlike for explicit allocation, the type-hash of the channetype does not need to be
given to the NCT-manager, since no other ends of an implicitlyllacated NCT may

ever be allocated explicitly. Hence, a check of the type-hashiiMnever be necessary

CHAPTER 7. PROTOCOL-CONVERSION 113

Algorithm 7.6: Making a CTB networked | detailed description

SEQ
Claim state-semaphore

IF
CTB is non-networked (i.e. network-hook is null)
SEQ
Check state of client and server in state-field
Notify decode-handler about
* CTB-pointer
* client- and server-state
* number of channels in CTB
* number of readers-in-server
Wait for pony kernel to implicitly allocate a new NCT
for the CTB
Get reply from decode-handler containing
* NCT-ID
* network-hook-handle
* decode-handle-array
* encode-handle-array
Store NCT-ID in state-field
Set up network-hook pointer with channel-words in
network-hook-handle
Decrease reference-count of network-hook-handle
Fork off a decoder and an encoder for each channel-word
in the CTB
TRUE -- i.e. CTB is networked (network-hook <> null)
SKIP
Release state-semaphore

in the NCT-manager. The NCT-manager now forks o a new NCT-handir, which
takes into account whether the client-end and/or the serveend are currently claimed
on our node when setting up its initial state.

The decode-handler waits for a reply from the NCT-manager, vigh will come via
the link from the master node. When getting the reply, the mastelink-handler passes
it on to the decode-handler via thedecode-reply-handle In order for the master-
link-handler to acquire the correct decode-reply-handlai needs the NCT-ID and

channel-ID of the decoder | which is why this information was sent along with the

CHAPTER 7. PROTOCOL-CONVERSION 114

original request to the NCT-manager. To get the decode-replyandle, the master-
link-handler rst contacts the CTB-manager via the CTB-manager-handle, and re-
quests theCTB-instant-handle of the CTB-handler for the corresponding NCT-ID.
Then the master-link-handler contacts the CTB-manager vialte CTB-instant-handle
and requests the decode-reply-handle for the correspondingaonel-ID. Having got
the decode-reply-handle, the master-link-handler passes theply from the NCT-

manager on to the decode-handler.

As can be seen from Figure 6.1, there is a small sub-process inside @iIrB-
handler called theinstant-handler. This deals with requests that need to be answered
instantly while the "'main' CTB-handler may be engaged in othethings (which may
involve communication with other components), in order to avid deadlock.

The only purpose of the decode-reply-handle is passing the nefdlom the NCT-
manager on to the decode-handler. This reply contains the NCID of the newly
(implicitly) allocated NCT. Having got that, the decode-hander sends an implicit
allocation request to the CTB-manager via the CTB-managerdndle. This request

contains the following information:
The NCT-ID.
The CTB-pointer.

A Boolean ag indicating whether the client-end of the CTB iscurrently claimed

on our node.

A Boolean ag indicating whether the server-end of the CTB is wrrently

claimed on our node.
The number of channels in the CTB.

The number of readers-in-server.

The CTB-manager stores the CTB-pointer for the new NCT-ID anddrks o a new

CTB-handler, which for its part forks o a decode-handler ad an encode-handler

CHAPTER 7. PROTOCOL-CONVERSION 115

for each channel in the CTB. The new CTB-handler takes into aount whether the
client-end and/or the server-end are currently claimed on aunode when setting up
its initial state. Now the CTB-manager sends a reply to the decadhandler, contain-
ing the network-hook-handle and the decode- and encode-lodgrarrays (which have
just been allocated by the CTB-manager). These are then retuea to the decoder,
together with the NCT-ID of the implicitly allocated NCT.

The decoder then continues making the CTB networked as set oun Algo-
rithm 7.6. This involves forking o a set of protocol-converers for each channel
in the CTB. The same rules for the order of the handles in the dede- and encode-
handle-arrays apply as during an explicit allocation.

Please note that the mechanism in the decoder that checks whetha CTB is
networked or not, and makes it networked if necessary, it part of, but done before
the actual channel-type-end NLC. Hence, it willnot be reversed if a started ULC
is cancelled. Once a CTB is networked, it will stay networkedof the rest of its
lifetime. So, even if a started ULC is cancelled, only the actha@hannel-type-end

NLC is cancelled; the CTB itself will remain networked.

Actual Channel-type-end NLCs

The actual channel-type-end NLC performed by the decoder csists of a single mes-
sage to the decode-handler containing the following inforrian about the NCT-end

that is to be sent:
The NCT-ID.
The direction-type (client-end or server-end).

The share-type (unshared or shared).

The decode-handler will internally release the end in case & unshared. Then the

NLC gets packed into a suitable network format (cf. Section 7.8) and passed on

CHAPTER 7. PROTOCOL-CONVERSION 116

to the CTB-handler, which will send it to the remote node. Thee, the relevant
CTB-handler passes it on to the encode-handler.

When the encode-handler on the receiving node encounters laaenel-type-end
NLC, it requests the allocation of a new channel-type-end forhe given NCT-ID
from the CTB-manager. This is done using the same request as cwgian explicit
allocation | the CTB-manager does not know whether the requet comes from the
main kernel during an explicit allocation or from an encodéandler dealing with a
channel-type-end NLC. As discussed earlier, the reply from the GFmanager may
either be a noti cation that the reference-count of an existig CTB must be increased,
or a noti cation that a new CTB must be allocated. In either case the reply is
forwarded to the encoder.

If the reference-count of an existing CTB must be increased, tlreessage from the
encode-handler to the encoder contains the CTB-pointer ohé existing CTB. After
the encoder has increased the CTB's reference-count, the ohal-type-end NLC is
ready to be output to the user-level channel.

If a new CTB must be allocated, the message from the encode-hagrdio the
encoder contains the NCT-ID for the received NCT-end. The ender will now do

the following:

Allocate a new CTB according to the type-descriptor.
Initialise the reference-count to 1.

Store the type-descriptor pointer in the CTB.
Initialise the client-, server- and state-semaphores.

Store the NCT-ID in the state- eld.

The encoder then sends a reply to the encode-handler contaigithe CTB-pointer

of the newly allocated CTB, the number of channels in the CTBand the number

CHAPTER 7. PROTOCOL-CONVERSION 117

of readers-in-server. As during an explicit allocation, the CB-manager is how noti-
ed about the number of channels and the number of readers-server. The CTB-
manager sends a reply to the encode-handler, containing thetwork-hook-handle
and the decode- and encode-handle-arrays (which have justebeallocated by the
CTB-manager). These are then passed on to the encoder, whichlwibmplete the

allocation by doing the following:

Set up the network-hook pointer with the channel-words in tB network-hook-

handle.
Decrease the reference-count of the network-hook-handle.

Fork o a protocol-decoder and a protocol-encoder for eaclhannel-word in the
CTB.

When the protocol-converters are forked o, the same rules ifahe order of the
handles in the decode- and encode-handle-arrays apply aplained above. After
the encoder has completed the allocation, the channel-tyfgad NLC is ready to be
output to the user-level channel.

The encode-handler completes the channel-type-end NLC bytiiging the CTB-
manager about the CTB-pointer of the newly allocated CTB. Tle CTB-manager
stores the CTB-pointer and forks o a new CTB-handler, which ér its part forks o
a decode-handler and an encode-handler for each channel ve {CTB. The reason
why the CTB-pointer was not given to the CTB-manager earliertogether with the
number of channels and the number of readers-in-server, is tha this way, we can
use the same request for allocating an NCT-end both in the main kel during an
explicit allocation and in the encode-handler during a charel-type-end NLC. Thus,
the corresponding mechanism in the CTB-manager only had to beplemented once.

As pointed out earlier, after the rst CLC has been output to theuser-level chan-
nel, the encoder acknowledges this to the encode-handlehigh passes the acknowl-

edgement on to the CTB-handler. If the output of the rst CLC was successful (i.e.

CHAPTER 7. PROTOCOL-CONVERSION 118

taken by the user-level process), the CTB-handler either notes the encode-handler
about it (if there is only one CLC in the ULC) or sends the ‘remaimg' CLCs to
the encode-handler (in which case the encode-handler autdially knows that the
output was successful). If the output of the rst CLC was cancell@ during a "cancel-
encode' operation, the CTB-handler sends a "cancel' messagefie encode-handler,
which will pass the “cancel’' message on to the encoder if therariere than one CLC
in the ULC. After the encode-handler has acknowledged the outpof the ‘remaining'
CLCs (if there are any) to the CTB-handler, no noti cation is returned, because it
is obvious that only the user-level process may have taken themaining' CLCs.

At this point, the encode-handler knows whether the ULC has lem taken by the
user-level process. If this is the case, the encode-handler nateinally claims all
unshared NCT-ends that were output to the user-level process aarpof this ULC.
If the rst CLC was cancelled, the decode-handler on the sendimode re-claims all

previously released unshared ends that were part of the caneell rst CLC.

Dealing With the Reference-count

The general rule for dealing with the reference-count of ngbrked CTBs during the
operation of pony is that when it needs to be increased, this is dorieforecompleting
the operation that requires the increase; when it needs to becreased, this is done
after completing the relevant operation, or when a previous opeian is cancelled.

The reference-count isncreasedin the following situations:

In the allocation process during an explicit allocation.

In the encoder during a channel-type-end NLC.

This applies both to new CTBs (whose reference-count is inglised to 1) and existing
CTBs (whose reference-count is ‘really' increased), and isrdobefore the user-level

process gets the relevant NCT-end.

CHAPTER 7. PROTOCOL-CONVERSION 119

The reference-count islecreasedn the following situations:

In the decoder after receiving the acknowledgement for therst CLC or the
‘remaining' CLCs. This is done forall channel-type-end NLCs in the relevant

CLC(s) at once.

In the decoder during a “cancel-encode' operation. Again,ishis done for all

channel-type-end NLCs in the rst CLC that is cancelled.

It is worth noting that the same rules as for increasing and deeasing the reference-
count of CTBs also apply for operations related to data-item NCs. This particularly

applies to the allocation and deallocation of memory for dyamic mobiles.

Dealing With Internal Claims and Releases

The rule for internally claiming and releasing unshared NCT-ats during the opera-
tion of pony is that when they need to be claimed, this is donafter completing the

operation that requires the internal claim, or when a previas operation is cancelled;
when they need to be released, this is domeforecompleting the relevant operation.

Unshared NCT-ends are internallyclaimedin the following situations:

In the main kernel after an explicit allocation.

In the encode-handler after the entire ULC has been taken by ¢huser-level
process. This is done foall channel-type-end NLCs in the relevant ULC at

once.

In the decode-handler, when the rst CLC has been cancelledn this case all

previously released unshared ends are re-claimed.

When a previously non-networked CTB is being made networkednshared ends are
treated as being internally claimed when the new NCT-handleand the new CTB-

handler are set up. Hence, no internal claim signal needs to be sen

CHAPTER 7. PROTOCOL-CONVERSION 120

Unshared NCT-ends are internallyreleasedin the following situations:

In the decode-handler during a channel-type-end NLC.

During the shutdown of the pny kernel. See Section 10.5 for details about

pony's shutdown mechanism.

7.8 Decode-handler and Encode-handler

The decode-handler and the encode-handler present the irftewe between the
protocol-converters and the CTB-handler. They are forked doy the CTB-handler
when the CTB-handler starts. Their general structure is the samas that of the
decoder and the encoder, and will therefore not be repeatadthis section. Instead,
we will focus on the di erences between the protocol-convers on the one hand, and

the decode-handler and the encode-handler on the other.

7.8.1 Dierences Compared With the Protocol-converters

Most messages passing through the decode-handler and the enduaiedler are just
forwarded between the protocol-converters and the CTB-halter. The decode-
handler and the encode-handler behave towards the protoamnverters in the same
way as the CTB-handler behaves towards them, and towards tH&TB-handler in the

same way as the relevant protocol-converter behaves towartfem. There are only

the following minor exceptions to this rule:

While between the protocol-converters and the decode- or @de-handler, all
NLCs are exchanged separately (see above), between the decameencode-
handler and the CTB-handler, the entire rst CLC or the entire ‘remaining’
CLCs are exchanged at once as a spedizZiLC-packet For this, all NLCs of the
rst CLC, or of the ‘remaining’ CLCs, are packed by the decodedndler and

unpacked by the encode-handler. Details about this are given Section 7.8.2.

CHAPTER 7. PROTOCOL-CONVERSION 121

Between notifying the CTB-handler about the number of NLCs irthe rst CLC
or in the “remaining’ CLCs and passing the relevant CLC-packdb the CTB-
handler, the decode-handler sends a special message to the CHadler if the
CLC-packet contains a channel-type-end NLC where an NCT-end sent over
itself.” This would need to be treated in the CTB-handler as a special sa; see

Section 8.1.6 for detalils.

As mentioned in Section 7.7.2, if there is a ULC with only one CLGhe CTB-
handler noti es the encode-handler whether the output was seessful or not,
whereas the encode-handler does not send such a noti cation ttee encoder.
The reason for this is that the encoder does not care about a @atled rst
and only CLC, since the handling of such a ULC is completed anyway after ¢h
rst CLC has been output, no matter whether the user-level proess has taken
it or the matching decoder during a "cancel-encode' operati. The encode-
handler, on the other hand, needs to know whether it was actliathe user-level
process that has taken the ULC, because only then it would inteafly claim

the unshared NCT-ends that were output as part of the ULC.

Apart from these exceptions, the communication structure betvesn the decoder and
the decode-handler is identical to the one between the de@tandler and the CTB-
handler. The same applies to the communication structure beaen the CTB-handler
and the encode-handler and the one between the encode-handind the encoder
accordingly.

The other di erences between the decode-handler and the eue-handler on the
one hand and the protocol-converters on the other, which daha ect the communi-
cation structure as discussed above, are the following thingdated to the handling

of channel-type-end NLCs:

"The decode-handler nds out about this by comparing the NCT-ID of the end that is being
sent with the ID of its own NCT. If they are identical, and the end that is being sent is unshared,
this means that the end is sent over itself.

CHAPTER 7. PROTOCOL-CONVERSION 122

Making a CTB networked if necessary in the decode-handler. Thinvolves
communication with the NCT-manager on the master node, and witthe CTB-

manager.

Dealing with incoming channel-type-end NLCs in the encodeandler. This

involves communication with the CTB-manager.

Internally claiming or releasing unshared NCT-ends where appable. This
involves communication with the CTB-manager, and with the esponsible CTB-

handler via the relevant CTB-claim-handle.

All these things were discussed in Section 7.7.2.

7.8.2 CLC-Packets

A CLC-packet contains all NLCs of a CLC | either of the rst CLC, o r of all
‘remaining’ CLCs. Actually, a CLC-packet is not a single "packe but consists of
two arrays in a sequential protocol. In this way, it is passed fra the decode-handler
to the CTB-handler, and then on to the link-handler that holds the link to the target
node. After arriving on the target node, the link-handler thee forwards the CLC-
packet to the relevant CTB-handler, which in turn passes it ond the encode-handler
responsible for our networked channel. Details about this aggven in Section 8.1.5.
CLC-packets look di erent on the sending node and on the reasng node. In
the decode-handler, they are assembled as address-arrayand a size-array. These
arrays contain the addresses and sizes of pieces of data that malevant for the CLC.
These are sent in a single operation over the link; see Section.9Ch the receiving
node, CLC-packets consist of alata-array and a size-array. The data-array is a
dynamic mobile byte array containing the entire data receed over the link as part
of the CLC, consecutively in a single chunk of memory. The sizeray is the same as
on the sending node. Naturally, the sum of all sizes in the size-ayrequals the size

of the data-array.

CHAPTER 7. PROTOCOL-CONVERSION 123

If there are no channel-type-end NLCs in the relevant CLC, alpieces of data
in the CLC-packet are data-item-NLCs. On the receiving node,hey are copied
by the encode-handler from the data-array into separate dynac mobile arrays. If
the CLC-packet only contains one data-item NLC, the data-aay is used without
copying. For each NLC, the encode-handler detaches the redev dynamic mobile
array (cf. Section 7.7.1) and passes the address/size pair on tetancoder.

If the relevant CLC contains channel-type-end NLCs, the CLC-@acket contains a
special piece of data, called th€LC-descriptor. This is located at the very end of
the CLC-packet, after all data-item NLCs that are part of it. The CLC-descriptor
describes the layout of the CLC. For each NLC, it stores whethet is a data-item
NLC or a channel-type-end NLC. This is necessary to preserve therat order of the
NLCs in the CLC when sending them from the encode-handler to thencoder. For
each channel-type-end NLC, the CLC-descriptor additionallgontains the NCT-ID,
the direction-type and the share-type of the relevant NCT-end

The CLC-descriptor is organised as a byte array. It consists of meecutively laid
out NLC-descriptors The size of an NLC-descriptor is one byte for data-item NLCs
or ve bytes (one byte plus an integer) for channel-type-en#iLCs. So, the total size
of the CLC-descriptor in bytes is the number of data-item NLCs jps ve times the
number of channel-type-end NLCs in the CLC.

The rst (and, for data-item NLCs, only) byte of the NLC-descriptor denotes the
type of the NLC (data-item or channel-type-end), plus the diection-type and the
share-type of the NCT-end in case of channel-type-end NLCs. Tablel shows the
layout of that byte. "Bit 1' here means the least signi cant bit the ve most signi cant
bits are always zero. If the NLC is a channel-type-end NLC, theemaining four bytes
of the NLC-descriptor contain the NCT-ID of the NCT-end.

The decode-handler uses the following generic process to deiee the address

and size of the CLC-descriptor after it has been allocated:

PROC DECODE.DATA (* data, RESULT INT addr, size)

CHAPTER 7. PROTOCOL-CONVERSION 124

| Bit |
Bit 1 0 1
data-item NLC || channel-type-end NLC
Bit 2 0 0 1
client-end server-end
Bit 3 0 1 0 1
shared unshared | shared unshared
Total value 000 001 101 011 111
0 1 5 3 7

Table 7.1: Layout of the rst byte of an NLC-descriptor

Similarly to 'DETACH.DYNM®IB process returns the address and size of aeccamp

variable. *' may be any occamp type here. Unlike DETACH.DYNM®Bwever,

‘DECODE.DATéaves the variable untouched, i.e. it is still de ned whenhe process
returns. The decode-handler stores the address and size of theGztescriptor at

the last index of the address- and size-arrays of the CLC-packdt.is ensured that

the address/size pair for the CLC-descriptor remains valid uritithe CLC-packet has
been sent to the remote node, because the CLC-descriptor remgin scope until the
acknowledgement for the CLC has been received.

The encode-handler on the receiving node extracts the CLGskriptor from the
data-array of the CLC-packet. Then it runs through the CLC-ascriptor. When the
encode-handler encounters a data-item NLC, it copies the rtegiece of data into a
new dynamic mobile array, detaches it, and passes the addressésjzair on to the
encoder. When a channel-type-end NLC is encountered, the eehnt operation is

started according to the content of the NLC-descriptor for thatNLC.

Chapter 8

Handlers and Managers for

CTBs and NCTs

Figure 8.1 shows the CTB-handler with its sub-components, the TB-manager, the
NCT-handler and the NCT-manager. These gny components are discussed in this

chapter.

8.1 The CTB-handler

The CTB-handler deals with the function of an individual netvorked CTB. This
involves handling incoming claim and release requests for tleads of the CTB, as
well as the communication along its channels. The latter is de using the decode- and
encode-handlers, which the CTB-handler forks o when it stad. The CTB-handler
can be contacted by link-handlers via theCTB-main-handle.! This is available from
the CTB-manager on request, as are the CTB-instant-handle arttie two CTB-claim-

handles, which will be discussed in Sections 8.1.1 and 8.1.2.

INo other components, except the CTB-manager during shutdown (cf. Section 10.5), wilever
contact the CTB-manager via the CTB-main-handle.

125

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 126

decode- instant- CTB-instant-
reply-handle handler handle

protocol- decode- decode- internal
decoder handle handler decode-handle
CTB-main-
handle
protocol- encode- encode- internal
encoder handle handler encode-handle
client- CTB-claim-
A listener handl(? I
el server- CTB-claim-
listener handle
CTB-handler
I CTB-manager-handle CTB-manager
——
NCT-handler NCT-handle I
I NCT-manager-handle NCT-manager

Figure 8.1. ppony components related to CTBs and NCTs

8.1.1 The Instant-handler

As already mentioned in Section 7.7.2, the instant-handler s small sub-process of
the CTB-handler dealing with requests that need to be answeradstantly while the
‘main’ CTB-handler may be engaged in other things. Since dug its function, the
‘main' CTB-handler needs to communicate with other pny components, it would
not be available to answer such “instant' requests via the CTB-nm&handle. In the
worst case, this would lead to deadlock; to avoid that, we neetie instant-handler.
The instant-handler can be contacted by other gny components via the CTB-

instant-handle. The following requests are handled by the insht-handler:

Getting the decode-reply-handle for a given channel-ID. Ti& is used by the
link-handler for replies to the decode-handler coming frortine NCT-manager.

Details were discussed in Section 7.7.2.

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 127

Getting the current remote node of the CTB. This is used by thereor-handler
during the call of the pony.err.get.current.remote.node ' process (cf. Sec-
tion 4.1.3).

8.1.2 Client-listener and Server-listener

As can be seen from Figure 8.1, thelient-listener and the server-listenerare two

small sub-processes of the CTB-handler that listen to claim and lease signals for
the ends of the CTB. This applies to both external and internaclaim or release
signals.

Both the client-listener and the server-listener ar@<ing over the relevant channel
of the network-hook-handle and the relevant CTB-claim-hadiie. In both cases, this is
done using the extended rendezvous. When an (external or intet) claim or release
signal arrives, the listener noti es the ‘'main' CTB-handler albut it via an internal
channel.

The "main' CTB-handler then deals with the claim or release grest. Doing
this, it is irrelevant for the "main' CTB-handler whether the request was external or
internal | they are handled in exactly the same way. After the handling of the claim
or release request has been completed, the ‘'main' CTB-handé=nds a con rmation
to the relevant listener, which will then release the channehithe network-hook-

handle or the CTB-claim-handle from the extended rendezvsu

8.1.3 Sessions for NCTs

In order to understand the internal function of the CTB-hander, it is necessary to
understand the concept okessiondgn pony. There are three general states in which

a CTB-handler can be (plus two special ones discussed in Sectioh.8):

outside a session

inside an external session

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 128

inside an internal session

This distinction will be referred to as the session-stateof the CTB-handler in the

following. Being inside a session means that one end of the NCT igioted on our

node while the opposite end of the NCT is claimed as well. If thepposite end

is claimed on another node, the session éxternal In this case, the CTB-handler
on our node communicates with the CTB-handler on the remoteade via the link

between the two nodes. If both ends of the NCT are claimed on ouode, the session
is internal.

During external sessions, the CTB-handlers on both nodes actteathe decode-
handlers (which in turn activate the decoders) of the channelwhose writing-ends
are in the NCT-end that is claimed on their nodé. In this way, for each channel in
the NCT, exactly one decoder is activated | either on the cliert-end node or on the
server-end node, depending on the direction of the channeltime channel-type.

During internal sessions, all decoders are deactivated. Sinaaltbends of the NCT
are claimed on the same node, they can both access the channetds of the same
CTB. Therefore, channel communication during internal sessis does not involve the
protocol-converters at all, but works in the “traditional' way; the outputting and the
inputting user-level process simply access the relevant chahmerd.

To handle claim and release requests, the CTB-handler needs tlmamunicate with
the NCT-handler that is responsible for our NCT. This is done in tlke usual way, using
the link between our node and the master. When the link-handigyets a message for
a CTB-handler, it requests the relevant CTB-main-handle from the CTB-manager
and then passes the message on. Likewise, if a message for an NCT-learadtives,
the link-handler requests the relevant NCT-handle from the NCimanager before
forwarding the message. During external sessions, the CTB-handEmmunicates
with the CTB-handler on the node which holds the opposite endfdhe NCT. Again,

this is done over the link between the two nodes.

2To which channels this applies is determined by using the number of readers-in-server, and the
correct order of the handles in the decode- and encode-handle-arrays; cf. Section 6.4.2 for details

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 129

There are three channels in the CTB-main-handle from whichhe CTB-handler
can input | one for messages coming from the NCT-handler regardaig claim or re-
lease requests for the client-end, one corresponding chanoelhe server-end, and one
channel for messages coming from the remote CTB-handler dugiexternal sessions.
There is a clear separation between when a CTB-handler is owsi a session, and
when it is inside a session. The CTB-handler communicates with @hNCT-handler
if and only if it is outside a session; it communicates with a remetCTB-handler if

and only if it is inside an (external) session.

8.1.4 Starting a Session

When the CTB-handler gets a claim signal for one of its ends o the relevant
listener, the claim request is passed on to the NCT-handler. The NGhRandler main-
tains queues for the client-end and for the server-end of the NCwhere it stores
nodes from which it has received claim requests for the respgetend. When a claim
request arrives in the NCT-handler, it is stored at the end of theelevant queue.

The NCT-handler deals with claim requests either immediatelywhen they arrive
| if no other node has currently claimed the respective end | or after the node
that had previously claimed the end has released it. In both casethe NCT-handler
checks whether the opposite end of the NCT is currently claimedf this is the case, a
"new-other-end' message is sent to the CTB-handler of the opptesend. Otherwise, a
“claim-con rm-nootherend' message is sent to the CTB-handldérom which the claim
request came. What these messages mean is explained below.

Both ends of a CTB can be in one of three possible states in the CTiandler:
released
pending

claimed

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 130

"Pending’ means that the CTB-handler has sent a claim requesbtifthe end to the
NCT-handler, but not received a reply yet. "Claimed' means tit our node has
reached the top of the respective queue in the NCT-handler, artde NCT-handler
has therefore sent a claim con rmation for the end to the CTB-andler. There are two
possible claim con rmations that may arrive for a pending NCT-ad: “claim-con rm-
nootherend' and “claim-con rm-otherendclaimed'. Which bthe two con rmations
arrives from the NCT-handler depends on whether the oppositen@ of the NCT is
currently claimed on another node or not. If a “claim-con rmnootherend' message
arrives, the CTB-handler changes the state of the pending end iclaimed’ and sends
a con rmation to the relevant listener, but does not start a sessio (i.e. the session-
state remains unchanged).

If an end is claimed in a CTB-handler while there is no sessignthere are two
things that may happen | either a release signal comes in from tlk relevant listener
(which would need to be forwarded to the NCT-handler), or a "ne-other-end' mes-
sage (carrying a node-ID) arrives from the NCT-handler. The tter means that a
new claim request for the opposite end of the NCT is now being dealith by the
NCT-handler. Since both things may happen at the same time, weead a mechanism
to avoid race conditions. Therefore, release requests are gailg con rmed by the
NCT-handler with a dummy “new-other-end' messadaunlessthe NCT-handler had
sent a real "'new-other-end' message before, for which it is nowadting a con rma-
tion from the CTB-handler. The following sequences of eventsay occur while an

NCT-end is claimed but the CTB-handler is outside a session:

The end gets released. The CTB-handler sends a release requeshe®oNCT-
handler. The NCT-handler receives the request and returns a dumy ‘new-

other-end' message as con rmation. When it has arrived, the (B-handler

3This may be the case either if the end has only just been claimed and the CTB-handler received
a “claim-con rm-nootherend' message from the NCT-handler, or if there was a sessiondfore which
was closed (cf. Section 8.1.5) because the opposite end was released.

4carrying a dummy node-ID of -1

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 131

changes the state of the end to ‘released' and sends a con rmatio the relevant

listener.

The end gets released. The CTB-handler sends a release requesh®oNCT-
handler. At the same time, the NCT-handler sends a real "new-ath-end'
message to the CTB-handler. The CTB-handler discards the "nevther-end'
message (in fact, it does not care whether it is a real or a dummyessage),
changes the state of the end to ‘released’, and sends a con rnaatito the

relevant listener. The NCT-handler then handles the incomingelease request.

The NCT-handler sends a real "new-other-end' message to the CThndler.

The CTB-handler takes the message and handles it.

In the rst case, the NCT-handler removes the node of the CTB-hatfier from which
the release request came from the relevant queue. Then it cheakhether there is
another node in that queue. If this is the case, the NCT-handlerow sends a “claim-
con rm-nootherend' message to the new node, since the oppositedas currently not
claimed.

If the NCT-handler gets a release request from a CTB-handler tohich it has
just sent a ‘new-other-end' message (the second case), it removed CTB-handler's
node from the relevant queue. Then it sends a “claim-con rmewmtherend' message
to the CTB-handler of the opposite end. If there is another naglin the queue for the
rst end, a "'new-other-end' message, containing the ID of the menode in the rst
queue, is sent immediately to the opposite CTB-handler (whictvill therefore receive
a “claim-con rm-nootherend' and a "new-other-end' messagei the NCT-handler
in quick succession).

If the CTB-handler gets a real ‘new-other-end' message fromahNCT-handler
(the third case), it checks the node-ID that comes with it. If i is di erent from
the ID of its own node, the CTB-handler can now start an externlasession (i.e. the
session-state is changed to “external session’). To start an extdreassion, the CTB-

handler contacts the link-manager to acquire the link-hand for the link-handler

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 132

that is responsible for the remote node. Then the CTB-handlerctivates all decode-
handlers for channels whose writing-ends are in the NCT-endaghed on our node.
When this is done, the CTB-handler sends a "new-other-endrcon’ message to the
NCT-handler, and waits for a “start-session' message from the rerad€TB-handler.

When the NCT-handler gets a "new-other-end-con rm' message, knows that
the end for which the "new-other-end' message was sent has notmeeleased. In
this case, it now sends a “claim-con rm-otherendclaimed' meggato the other node,
unlessboth ends are claimed on the same node.

If the claim con rmation from the NCT-handler for a pending erd is “claim-
con rm-otherendclaimed' (which will carry the ID of a remote node), the state of the
pending end is changed to "claimed' and a con rmation is senb the relevant listener.
Now an external session can be started. The CTB-handler change® thession-state
to “external session’', acquires the relevant link-handle froitne link-manager, and
activates the relevant decode-handlers. When this is dondyeé CTB-handler sends a
“start-session' message to the remote CTB-handler.

If a CTB-handler receives a "'new-other-end' message whichmas a node-ID that
Is identical to the ID of its own node, this means that an intemal session needs to be
started (i.e. the session-state is changed to “internal session'h this case, no link-
handle needs to be acquired from the link-manager, and no dele-handlers need to
be activated. The "new-other-end-con rm' message still neetts be sent to the NCT-
handler, however, to comply with the procedure mentioned ave. In this case, it is
obvious that the state of the other end is "pending’. Since thather end is on our own
node, the CTB-handler can now change the other end's state tolaimed' and send
a con rmation to the relevant listener without having to await a claim con rmation
from the NCT-handler. As mentioned above, the NCT-handler onlgends the claim
con rmation if both ends are claimed on di erent nodes.

Analysing the above protocol, it emerges that before an extesthsession is started,

one of the nodes receives a "'new-other-end' message and therotitode receives a

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 133

“claim-con rm-otherendclaimed' message. The new-othen& message always ar-
rives on the one node rst and gets acknowledged; only then Wihe “claim-con rm-
otherendclaimed' message arrive on the other node. In order peserve a clear
separation between the states of the CTB-handler (i.e. betwedimes when it is out-
side a session and times when it is inside a session), there must be a syorghation
between the two nodes. Therefore, the “start-session' message i §em the node
that has received the “claim-con rm-otherendclaimed' mesga to the node that has
received the "new-other-end' message before the session is digtgéarted. This en-
sures that no session-related communication is sent from one ndde¢he other before

the other node is actually aware of the session.

8.1.5 Handling Sessions

As mentioned above, during internal sessions, all communicatiawer the channels of
the NCT is done locally by accessing the channel-words in the CTdBrectly from the
user-level processes which are writing to and reading from thkeamnels. No decoders
are active in this case, which means that no session-related messagre exchanged
between nodes.

During external sessions, the CTB-handler must forward message®rr the
decode- and encode-handlers to the CTB-handler on the remeatode. This has been
discussed in the previous chapters. Communication between thea CTB-handlers
is done in the usual way. One of the CTB-handlers sends a messagéeht® relevant
link-handler over the link-handle that was acquired at the srt of the session. The
message is then sent over the link. The link-handler on the reegig node passes the
message on to the relevant CTB-handler via its CTB-main-handl

The CTB-handler maintains a special ag for all channels in te CTB called the

ULC-state. There are four possible ULC-states:
No ULC pending.

First CLC is pending, no ‘remaining' CLCs in ULC.

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 134

First CLC is pending, remaining' CLCs yet to come.

"Remaining' CLCs are pending.

Using the ULC-state, the CTB-handler is able to correctly commuigate with its
decode- and encode-handlers, both when getting messages frdra tlecode- or
encode-handler for the remote node and vice versa. For the liing of ULCs, please
refer to Chapter 7. The ULC-state is also important when it come® closing sessions;
see below for details.

During a session, ends that are claimed on our node may be releaskdsuch a
case, a release signal arrives in the CTB-handler from the redew listener. If the
session is external, this obviously applies only to one of the endf it is internal,
both of the ends may be released on our node.

If an end gets released during an internal session, the CTB-hardkends a release
request for that end to the NCT-handler. Then it waits for a dumny “new-other-
end' message from the NCT-handler as con rmation. When the CTBranager has
received the con rmation from the NCT-handler, the session-statis changed to "no
session'. The state of the relevant end is changed to ‘releasedida con rmation
is sent to the relevant listener. If an end gets released during &xternal session, all
this needs to be done as well. Before sending the release reqte#te NCT-handler,
however, the session needs to be closed (see below). This is nege$sanaintain a
clear separation between the states of the CTB-handler.

When the NCT-handler gets a release request from a CTB-handlethile there
is a session (i.e. while both ends are claimed), it returns a dumgmnew-other-end'
message and removes the CTB-handler's node from the relevaniege. Then it
checks whether there is another node in that queue. If this ihe case, the NCT-
handler now sends a "new-other-end' message, containing thedbDthe new node, to

the opposite CTB-handler.

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 135

Algorithm 8.1 shows how the closing of a session is initiatédPlease note that all
decode-handlers can be deactivated straight away since nori¢hem may be pending.
This is clear because if the end is shared, it cannot be releasedhe middle of a ULC.
If the end is unshared, the end cannot be moved (which is the gnévent that can
trigger an internal release for an unshared end) in the middld a ULC (unless the end
is being sent over itself, but this is a special case; see Sectioh.@. Algorithm 8.2

shows how a CTB-handler reacts when it gets a "close-session' messag

Algorithm 8.1: Initiating the closing of a session

SEQ

We just received a release signal

Deactivate all active decode-handlers

Send ‘“close-session' message to remote CTB-handler
For all pending encode-handlers

IF
"Remaining' CLCs pending
SEQ
Wait for acknowledgement (will definitely come)
Pass acknowledgement on to remote CTB-handler
TRUE -- First CLC pending
SEQ
Initiate “cancel-encode'
Depending on the outcome, pass either cancel
or acknowledgement on to remote CTB-handler
-- Wait for confirmation from remote CTB-handler
INITIAL BOOL running IS TRUE:
WHILE running
ctb.main.handle.svr[to.handler] ? CASE
First CLC of a new ULC for one of the channels
Discard, send cancel message to remote CTB-handler
“close-session' message
running := FALSE

After a CTB-handler has reacted to an incoming "close-session'ssage, it changes

the session-state to ‘'no session'. The state of the end that is clain@dour own node

SUpdates of ULC-states for the individual channels are not shown in the algorithns in this
chapter in order to keep them short. Please note that no update of the session-state included in
Algorithm 8.1, because the session-state is updatedfterwards, when the release request has been
sent to and con rmed by the NCT-handler. The same applies to the state of the end that hasbeen
released.

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 136

Algorithm 8.2: Reacting to a "close-session' message

INITIAL INT num.pending.decode.handlers IS O:
SEQ
We just received a ‘close-session' message from remote C TB-handler
For all active decode-handlers
IF

Decode-handler is not pending
Deactivate decode-handler
TRUE -- Decode-handler is pending
num.pending.decode.handlers := num.pending.decode.han dlers + 1
-- Wait for cancel or acknowledgement for all pending decode -handlers
SEQ i = 0 FOR num.pending.decode.handlers
ctb.main.handle.svr[to.handler] ? CASE
Cancel CLC
Pass cancel on to decode-handler (this deactivates it)
Acknowledgement
SEQ
Pass acknowledgement on to decode-handler
Deactivate decode-handler
Send ‘“close-session' message to remote CTB-handler
Change session-state to "'no session'

is not changed, since the closing of the session was initiated by tieenote end getting
released. Our own end is now in exactly the same state as if it haasj been claimed
and the NCT-handler had con rmed the claim with a “claim-conrm-nootherend'.

If both ends of the NCT are getting released at the same time, theTB-handlers
on both nodes will close the session using Algorithm 8.1. This is nooplem, however,
since the con rmation for a “close-session' request is the "closessen' message itself.
If both ends get released at the same time, no ULCs (in either dogon) may be
pending. Therefore, on either node, no encode-handlers may pending and no " rst
CLC' messages may arrive from the remote CTB-handler anymoreshich enables a
safe handshake between the two CTB-handlers both using Algorith8.1.

A special characteristic regarding internal claim and releasggnals has not yet
been discussed. As described in Section 7.7.2, when an unshared N@Gd-arrives
on our node, it is internally claimed by the encode-handleafter it has been taken

by the user-level process. When an unshared end is sent to anotherda, it is

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 137

internally released by the decode-handldreforethe CLC-packet is passed on to the
CTB-handler.

In cases where an NCT-end arrives on our node and is immediatelgnt away
again, the decode-handler responsible for sending the end may to release the end
before the encode-handler that has just output the end to theser-level process has
had the chance to claim it. Therefore, the CTB-handler acceéprelease signals also for
ends that are currently released if the CTB-handler is currdly not inside a sessior?.
The CTB-handler keeps a count for each end which stores how efta release signal
for the end was received while the end was released. When suchekease signal
comes in, the count is increased and a con rmation is sent to theelevant listener.
No release request is sent to the NCT-handler in such a case.

When a claim signal comes in for an end whose count of previouswhuy releases
is greater than zero, the count is decreased and a con rmatios sent to the relevant
listener. Again, no message is sent to the NCT-handler. The reasom feeeping a
count rather than a Boolean ag is that an NCT-end may arrive onour node and be
immediately sent away again several times in a row (via di erémetworked channels),
so that several consecutive dummy release signals might arrivetire CTB-handler.

Admittedly, the chance of the dummy release count ever beingeater than 1 is
very low, since this would require an NCT-end to arrive on our rae (in an encode-
handler), be sent away, return to our node via another netwodd channel (i.e. in
another encode-handler), and be sent away a second tinefore the rst encode-
handler has had the chance to internally claim the end. Sindbe network latency is
magnitudes larger thanoccamp's context-switch time, the chances of this happening
are in nitesimal. Nevertheless, it may theoretically happen, sd is necessary to cater
for this possibility. A dummy release count of 1 may occur moredguently, since this
only requires the decode-handler to release the end before #ncode-handler claims

it; no network latency is involved here.

5During sessions, the CTB-handler accepts release signals only for ends that are curretl
claimed.

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 138

8.1.6 Sending an NCT-end Over ltself

One special case has not yet been discussed: sending an NCT-end ¢self (or to be
more speci ¢, over one of its channels). In the user-level codaich a communication

would look like this:
foo.clifchan] ! foo.cli

For the traditional (non-networked) occamp communication mechanism, this presents
no problem, since only a pointer (tofoo.cli 'in the above example) is communicated
over a channel-word foo.clijchan] ‘). It is irrelevant whether the pointer belongs
to the same channel-type as the channel-word over which it isrde or not. For
networked communication, however, this case is non-triviahnd cannot be handled
using the ordinary mechanisms described so far.

When a shared NCT-end is sent over a clone (cf. Section 1.5.3)tskif, no special
care needs to be taken by thegny environment. This is because no internal claims
and releases are involved in this case.

When an unshared NCT-end is sent over itself, however, the normaechanisms
would not work. The decode-handler would try to internally elease its own CTB-
handler, which in turn would try to deactivate the decode-hadler | this would

deadlock the NCT. Therefore, we need two more session-states i t6 TB-handler:

sending an end over itself (shorthand: “sending eoi')

suspended

As described in Section 7.8.1, before sending a CLC-packet teetlCTB-handler
that contains a channel-type-end NLC where an NCT-end is sent ew itself, the
decode-handler sends a special message to the CTB-handler. WtienCTB-handler
receives such a message, it musispendhe session. A suspended session is one where
all decode-handlers are deactivatedxceptthe one dealing with the “end-over-itself'

CLC. During a suspended session, the session-state of the CTB-handiarthe node

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 139

where the end is sent over itself is "'sending eoi'; the session-statethe opposite
CTB-handler is "suspended'.

Algorithm 8.3 shows how the suspension of a session is initiated by tk&a B-
handler. The reaction of the remote CTB-handler when it getthe "suspend-session'
message is shown in Algorithm 8.4. It can be seen that initiating a spension is
similar to initiating the closing of a session. Likewise, the algibhms reacting to the

respective messages are similar.

Algorithm 8.3: Initiating the suspension of a session

SEQ
We just got an “end-over-itself CLC' message from a decod e-handler
Get the CLC itself from “eoi' decode-handler
Deactivate all active decode-handlers except the “eoi' one
Send “suspend-session' message to remote CTB-handler
"Cancel-encode' (or get acknowledgement from) all
pending encode-handlers and pass either cancel
or acknowledgement on to remote CTB-handler
-- Wait for confirmation from remote CTB-handler
INITIAL BOOL running IS TRUE:
WHILE running
ctb.main.handle.svr[to.handler] ? CASE
First CLC of a new ULC for one of the channels
Discard, send cancel message to remote CTB-handler
“close-session' message (only possible if “eoi' in firs t CLC)
SEQ
Send cancel message to “eoi' decode-handler
(this deactivates it)
Send ‘“close-session' message to remote CTB-handler
Change session-state to "'no session'
running = FALSE
“suspend-session' message (only possible if “eoi' in fi rst CLC)
Do nothing -- leave this NCT to deadlock (as would
a non-networked channel-type in the same situation)
“suspend-session-confirm' message
SEQ
Change session-state to "sending eol'
Pass the CLC on to the remote CTB-handler
running := FALSE

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 140

Algorithm 8.4: Reacting to a ‘suspend-session' message

SEQ

We just received a ‘suspend-session' message from remot e CTB-handler

Deactivate all non-pending active decode-handlers

Wait for cancel or acknowledgement from remote CTB-hand ler for all
pending decode-handlers and pass the relevant message o n to the
respective decode-handler. Deactivate decode-handle rs to which we
passed on an acknowledgement.

Send “suspend-session-confirm' message to remote CTB- handler

Change session-state to “suspended'

If an attempt is made to send both ends of the NCT over themselves the
same time, the NCT will deadlock, because each CTB-handler wiend a "suspend-
session' message to the other one. This is no problem, however, siacion-networked
channel-type would deadlock as well in the same situation, so samtic transparency
is preserved in this case too.

When the last CLC of the ULC that contained the “end-over-itself CLC has
been output to the receiving user-level process, the suspended Bzlandler gets
an acknowledgement from the encode-handler as usual. Wheristthappens, the
suspended CTB-handler changes its session-state to “internal sassiand the state
of the end that was sent over itself to “claimed’, since that end inow claimed on the
receiving node. Then a special "eoi-done' message is sent to therM@ndler. When
the NCT-handler gets this message, it updates the queue of thespective end, so
that the queue now contains the receiving node on the top (anshly’) position. No
further communication happens between the NCT-handler anche CTB-handler on
the sending node.

The acknowledgement from the encode-handler is sent to the 8Jhandler on the
sending node as usual. When it arrives there, it is forwarded the decode-handler.
Then the decode-handler is deactivated. The session-state oktiCTB-handler on
the sending node is changed to 'no session’; the state of the endtthvas sent over

itself is changed to ‘released'.

"because the end is unshared

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 141

The last thing that needs to be done in order to fully support NCTends being sent
over themselves is adapting Algorithms 8.1 and 8.2. If a suspeld€TB-handler gets
a release signal, obviously no decode-handlers are active | he@ no active decode-
handlers need to be deactivated. If during Algorithm 8.1 a suspded CTB-handler
receives an acknowledgement from an encode-handler, thesy@nly come from the
encode-handler whose encoder has just output the last CLC of thend-over-itself’
ULC to the user-level process. In this case, the state of the end thaias sent over
itself is changed to “claimed', and an “eoi-done' message is derthe NCT-handler.
There is no point in changing the session-state, because after tesing of the session
has been completed, the session-state will be changed to "'no sesaioyway | since
the closing of the session was initiated because the NCT-end overigththe “end-
over-itself' end was received has been released.

Algorithm 8.2 must be adapted as well. If the NCT-end on the receing node is
released, the CTB-handler on the sending node, whose session-sistesending-eoi’,
will receive a “close-session’ message from the suspended CTB-tendh the re-
ceiving node. Obviously, there is only one active decode-tdier in the “sending-eoi’
CTB-handler, namely the “end-over-itself' decode-handlerHence, no non-pending
active decode-handlers need to be deactivated. If during Algthm 8.2 an acknowl-
edgement arrives for the “end-over-itself' decode-handlehe state of the end that
has been sent over itself must be changed to ‘released'. The sesstate is changed

to "no session' at the end of Algorithm 8.2 anyway.

8.2 The CTB-manager

The CTB-manager keeps the CTB-main-, -instant- and -claim-éindles for all CTB-
handlers on a node. They are given to othergmy components on request. Addition-
ally, the CTB-manager stores the CTB-pointers of all networkd CTBs. They are

used when the CTB-manager handles requests to make a previousbn-networked

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 142

CTB networked (cf. Section 7.7.2) or to allocate a new NCT-en(tf. Sections 6.4.2
and 7.7.2).

The CTB-manager maintains arrays to store the various handéeand the CTB-
pointers. The index in the arrays corresponds to the NCT-ID of tb relevant CTB.
Since not for every NCT across agny application there is necessarily a networked
CTB (and a CTB-handler) on every node, some indices of the aga may not be
used. However, as discussed in the previous chapters, a new netedr€TB may be
allocated on a node at any given time. Therefore, the free ilmg¢s may come into use
at any time as well.

The arrays used are dynamic mobile arrays. When a new CTB must bécated
on our node with an NCT-ID greater or equal to the current size athe arrays, the
arrays are extended. To determine the new size of the arrays,etlturrent size is
doubled until the new size is greater than the NCT-ID of the new TB. Then arrays
of the new size are allocated and the old arrays are copied toetlbeginning of the
new arrays.

During the shutdown of the pony kernel, the CTB-manager is responsible for
internally releasing unshared NCT-ends that are on our node, drfor shutting down

the CTB-handlers. pony's shutdown mechanism is explained in detail in Section 10.5

8.3 The NCT-handler

The NCT-handler resides on the master node and is responsible faetclaiming and
releasing of the ends of an individual NCT. It handles claim andelease requests
from the CTB-handlers across the pny application. The general functionality of the
NCT-handler was described in Sections 8.1.3 through 8.1.6 eddy and will therefore
not be repeated here.

The claim request queues for the client-end and the server-eate implemented

as ring bu ers using dynamic mobile arrays. When a queue is fulihe relevant array

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 143

is doubled. This involves allocating a new array twice the stzof the old one and

copying the old array to the beginning of the new one.

8.4 The NCT-manager

The NCT-manager resides on the master node and keeps the NCT-h&slfor all
NCT-handlers. They are given to link-handlers on request. Addinally, the NCT-

manager stores the following information for explicitly athcated NCTs:

NCT-name
client-state
server-state

type-hash
The client- and server-states can be one of the following:

unknown
unshared, not yet allocated
unshared, already allocated

shared

All data is kept in dynamic mobile arrays. The index in the arrag corresponds to
the NCT-ID. When a new NCT comes into existence, the relevant datis stored at
the end of the arrays. When the arrays are full, they are doulde

During explicit allocation (explained in detail in Section6.4.2), this data is used
to determine whether the NCT-end can be allocated or an erroreeds to be returned.
When the NCT-manager receives an explicit allocation request searches for the

given NCT-name in its database. If the name is not found, the datof the new NCT

CHAPTER 8. HANDLERS AND MANAGERS FOR CTBS AND NCTS 144

is stored at the end of the arrays, and a new NCT-handler is forkenl. Then the
new NCT-ID is returned to the requesting node.

If the NCT-name already exists in the NCT-manager's database, éhdata coming
with the allocation request is veri ed against the data in the @tabase. If an error
is encountered (see Section 3.1.1 for a detailed descriptiohpmssible errors), the
error is returned to the requesting node. Otherwise, the clienand server-states are
updated, and the NCT-ID of the existing NCT is returned to the regesting node.

It is signi cantly simpler for the NCT-manager to handle implicit allocation re-
guests coming from a decode-handler which is making a prevsby non-networked
CTB networked. Details about this are given in Section 7.7.2No data except the
NCT-name needs to be stored for implicitly allocated NCTs. The NCdhame stored
is an empty string. Since empty strings are not valid as NCT-nansefor pony's allo-
cation processes, the NCT-manager cannot accidentally nd an ficitly allocated
NCT when searching through its database during an explicit allzation request.

During the shutdown of the pny kernel, the NCT-manager is responsible for shut-
ting down the NCT-handlers. Please refer to Section 10.5 for atdéded description

of pony's shutdown mechanism.

Chapter 9

The Network Drivers

Figure 9.1 shows pny's network drivers, which are discussed in this chapter.

B —
TCP/IP .
link-handler b3 Eieelis I
I link-manager-handle)|——
TCP/IP TCP/IP
link-manager-handle link-manager

Figure 9.1: pony's network drivers

9.1 The TCP/IP Link-handler

The link-handler is responsible for the communication over hgork links. Links are
two-way asynchronous bu ered connections between two noddbpy are preserving
the order of messages. All network communication between a givpair of nodes
is multiplexed over the link between them. The practical immentation of links
depends on the network-type used. This chapter discusses theklimandler and the
link-manager for TCP/IP, which is currently the only supported network-type in

pony. TCP/IP links are implemented as sockets.

145

CHAPTER 9. THE NETWORK DRIVERS 146

Every slave of a pny application has a link to the master. This is used to
communicate with the NCT-manager and the NCT-handlers. Additiaally, there are
links between every pair of slaves that have or had a session esisi#d between two
of their CTB-handlers. This means that if between a given paiof slave nodes there
was never a session established so far, there is also no link betwdwmt. Of course,
there may also be sessions between the master and a slave, but as jushtioned,
every slave has a link to the master anyway; that link is used for sgions as well.
The creation of new links between slave nodes is discussed in Bec8.2. The link
between a slave and the master is created during the startup ofdtslave node; this
Is described in Section 10.4.

The link-handler consists of two parallel sub-processes | the reder and the
writer. The names ‘reader' and "writer' are to be seen from thpoint of view of
the socket. This means that the reader reads network-messagesf the socket and
forwards them to the target component. The writer reads messag which ny
components have sent over the link-handle, and sends them owbke socket to the
target node.

As discussed earlier, if a networking error occurs during the opg¢ion of the
link-handler or the link-manager, the error-handler is nated about it. For the
implementation of pony's error-handling mechanism, please refer to Section 10.1.

Since communication between slaves only happens duriegternal sessions, there
iIs no need for a link-handler between a slave node and itself. i$hs di erent for
the master, since also components on the master node need to comivate with
the NCT-manager and the NCT-handlers. Therefore, one of the krshandlers on
the master node is adummy link-handlerwhich simulates a ‘loop' link between the
master and itself. This dummy link-handler only ever handles sssages related to the
master, such as claim and release requests for NCT-handlers. It aemneeds to handle
session-related messages, since, just like on a slave node, sessionsd&retive master

and itself are always internal and therefore do not involve # pony infrastructure.

CHAPTER 9. THE NETWORK DRIVERS 147

The reader is inactive in the dummy link-handler | since there is no socket to
read from. The writer does not write messages to a socket, but ¥aards them to the
target components on the master node itself. In order to preserithe semantics of
links, being asynchronous and bu ered, it is not possible for theriter to send the
message directly via the handles to the target components, sinm@mmunication over
occamp channels is synchronous and unbu ered. Instead, a speclalk-outputter is
forked o by the writer, which outputs the message when the targt component is
ready to take it.

This gives us asynchronism and bu ering. However, the other ingstant char-
acteristic of links, the fact that the order of messages must be @merved, has to
be taken into account as well. This means that in order to simate a link cor-
rectly, the link-outputters are not allowed to output their respective message until
the “previous' outputter has done so. This behaviour is impleemted by using a
chain of link-outputter-chain-handlesbetween the individual link-outputters. These
are channel-types containing a single channel whose cliemdeis held by one link-
outputter, and whose server-end is held by the link-outputtethat was started next.

A link-outputter waits for a signal coming in over the “previais' chain-handle
before outputting its message to the target component. When ¢hmessage has been
taken, the link-outputter sends a signal over the "next' chaumandle. The very rst
signal is sent by a small sub-process running in parallel with theam loop of the
writer. The very last signal is taken by the writer after its man loop has nished

(i.e. when the link-handler is shut down).

9.2 The TCP/IP Link-manager

The link-manager keeps the link-handles for all link-handts on the node and passes
them to other pony components on request. When a session is established between
two slaves for the rst time, the link-manager creates a new lkand forks o a new

link-handler. TCP/IP socket links are created by either conecting to the remote

CHAPTER 9. THE NETWORK DRIVERS 148

node, or accepting an incoming socket connection. The ruler fiis is that the link-
manager on the node with the greater node-ID always contactise link-manager on
the node with the lesser ID. This conforms with the fact that themaster (whose
node-ID is 0) is being contacted by slaves (whose node-ID is gter than 0) during
the startup of slave nodes. For details ongny's startup mechanism see Section 10.4.

When a link-handler writer on the master node gets a ‘new-othend' or a “claim-
con rm-otherendclaimed' message from an NCT-handler, it exames the node-ID
carried by that message. If it is greater than O but less than theade-ID of the
target node of the message, the writer contacts the link-managand requests the
network location of the node with the ID carried by the messageThe request is
made via the TCP/IP link-manager-handle, which is di erent from the normal link-
manager-handle.

The special handle is used because the network location of a nagdenetwork-
type-speci c (IP address and port number in case of TCP/IP) and sbuld therefore
not be exchanged over the normal link-manager-handle. Thek-manager on the
master node de nitely knows the location of the node with the igen ID because
all slave nodes in the application have contacted the master dag their startup.
When the writer gets the location for the given node-ID, it stees it in the outgoing
network-message.

When the reader on the target node gets the "new-other-end’ aclaim-con rm-
otherendclaimed' message, it checks the node-ID that comeghwit. If it is greater
than O but less than the ID of the own node, the reader knows thahe network-
message contains the location of the node whose ID was carriedthg message. In
this case, the reader extracts the location and passes the nd@eand the location
from the network-message to the link-manager via the TCP/IP hk-manager-handle.
The link-manager stores the location for the given node-ID lbause it knows that it

will soon get a request (from a CTB-handler) for the relevant tik-handle.

CHAPTER 9. THE NETWORK DRIVERS 149

When the link-manager gets a request for a link-handle for wthi there is no link-
handler yet!, the link-manager compares the node-ID of the request with énlD of
its own node. If the own node-ID is greater, the link-manageronnects to the other
node. The location of the remote node is de nitely stored in té link-manager because
the CTB-handler has received a "'new-other-end' or a "claioon rm-otherendclaimed’
message beforehand | so that the link-handler has stored the lo¢@n in the link-
manager. When the connection to the other node has been estabéd, the link-
manager forks o a new link-handler, giving it the socket thatwas just created, and
returns the new link-handle to the requesting CTB-handler.

If the own node-ID is less than the node-ID of the request from ehCTB-handler,
this means that the other node will connect to us. In this casehe link-manager
allocates a new link-handle and returns the client-end to #hrequesting CTB-handler
without forking o a new link-handler. Instead, the server-end of theihk-handle is
kept by the link-manager, together with a ag that the respecive link is pending
which means that the remote node will contact us soon.

When the link-manager on a slave node accepts an incoming sdogennection
from another slavé, a new link-handler is forked o. If the respective link was
pending, no new link-handle is allocated, but the one that veapreviously allocated
is used. With this mechanism, it is possible to answer requests froGTB-handlers
for link-handles before the actual link is established. Wherme CTB-handler sends
a message over the link-handle while the link is pending, the ssage is simply not
taken. When the socket connection from the remote node has beaccepted, the
then forked o link-handler will start reading messages from th link-handle as usual.

The link-manager uses dynamic mobile arrays to store the linkandles and the
data associated with a particular link. The index in the arrayscorresponds to the

node-ID of the remote node. On slave nodes, the same mechanismssdufor the

1This can only be the case on slave nodes; such a request can only come from a CTB-haerd|
2The case when the link-manager on themaster node accepts an incoming socket connection
from a slave is discussed in Section 10.4, which explainoopy's startup mechanism.

CHAPTER 9. THE NETWORK DRIVERS 150

arrays as in the CTB-manager. That is, some indices may be unusédthere is
currently no link to the respective node. When a new link is estdished to a node
with a node-ID greater or equal to the current size of the array the arrays are
extended in the same way as in the CTB-manager. On the master rgdhe array
mechanism is like in the NCT-manager. When a new slave connectsthe master,
the next free index at the end of the arrays is used as the node-bf the new slave.
When the arrays are full, they are doubled.

During the shutdown of a slave node, the link-manager is respobl& for shutting
down the link-handlers. This is explained in detail in Sectio 10.5, where pny's

shutdown mechanism is discussed.

9.3 Optimising TCP/IP Network Performance

pony uses Barnes' socket library [BarOOa] to communicate over ks. Some auxiliary
processes were implemented speci cally foopy; these are based on the socket library
as well. The Nagle algorithm [Wik06] is turned o for sockets used by pny in order
to avoid delays when sending relatively small network-messag@sghich will be the
bulk of network communication in a typical pony application).

As discussed earlier, when a ULC is sent over a networked channek tihst CLC
or the ‘remaining' CLCs of the ULC are sent over the link in a singlnetwork-message.
This signi cantly improves network latency compared to preious versions of pny,
where every NLC was sent and acknowledged separately. In orderlie able to send
network-messages that contain CLC-packets, two special processge used by the

link-handler:

3The Nagle algorithm aims to improve the e ciency of TCP/IP networks by reducing the number
of packets that are to be sent. It coalesces several small outgoing messagesl ssends them all
together once a certain packet size has been reached or a timeout has occurred. long, this is
counterproductive, however, since pny awaits acknowledgments for all data messages sent, in order
to preserve the handshake semantics afccamp's channel communication. Therefore, an immediate
transport of each message o ers better performance in gny.

CHAPTER 9. THE NETWORK DRIVERS 151

PROC pony.int.tcpip.socket.fullwrite.multi
(SOCKET sock, [[BYTE header,
VAL []INT addr.array, size.array,
RESULT INT result)

PROC pony.int.tcpip.socket.fullread.multi
(SOCKET sock, RESULT [IBYTE header,
RESULT MOBILE [BYTE data.array,
RESULT MOBILE [JINT size.array,
RESULT INT result)

For convenience, their names will be abbreviated “fullwetmulti' and “fullread-multi’
in the following. Both processes are based on the socket libranycdause Barnes' mech-
anism to make blocking system calls without blocking theccamp kernel, described
in [BarOOb]. The actual socket operations are done by C funotis called from within
“fullwrite-multi' and “fullread-multi'. Both “fullwrite -multi' and “fullread-multi* only
need to call a “blocking' C function once.

With these processes, it is possible to send and receive network-mgssathat
consist of a xed-sized header and any number of variably-sizeteins. “fullwrite-
multi' expects an address-array and a size-array; fullreadutti' returns a data-array
and a size-array. This ts the needs of CLC-packets (cf. Seomn 7.8.2). In the
case of CLC-packets, the items are the individual NLCs, and the @-descriptor if
applicable.

The header of the network-message must be eight bytes (the sizawd integers)
larger than the actual header data, because the last eight byeof the header are
used by “fullwrite-multi' and “fullread-multi' internally . “fullwrite-multi* stores the
number of items in the last four bytes of the header. If there isxactly one item, its
size is stored in the penultimate four bytes of the header. If tharrays are empty,
“fullwrite-multi* only sends the header. If there is exactlyone item, “fullwrite-multi'

sends the header and the single item. If there is more than onerit, “fullwrite-multi’

CHAPTER 9. THE NETWORK DRIVERS 152

sends the header, the size-array and all items. Everything is $ém one go using the
‘writev ' function. No copying of the items that are sent is necessary, wdi improves
performance.

“fullread-multi' rst reads the header and extracts the numter of items. If there
are no items, empty arrays are returned. If there is exactly @nitem, “fullread-multi’
extracts the item's size from the header and reads the item. &n “fullread-multi’
returns the item itself in the data-array, and for the size-amy an array with the
item's size as the only element. If there is more than one itenfullread-multi' reads
the size-array (whose size in bytes is four times the number oérhs). Then it sums
up all sizes in the size-array and reads the corresponding numlmé bytes into the
data-array. Using this mechanism, xed-sized network-messages@st non-CLC-
related ones) only require one socket read. Network-messageshwanly one item
in the arrays require two socket reads. (The bulk of CLC-packetin a typical pony
application will only contain a single item | either a data-it em NLC or a CLC-
descriptor.) Network-messages with more than one item in the ays require three
socket reads.

“fullwrite-multi' and “fullread-multi’ are also used by the ANS the link-manager
and the link-handler to allow strings of variable length as pa& of network-messages.
This is used for application-names and NCT-names. In this caséhe address-array
and the size-array for “fullwrite-multi' only contain one eément each. Hence, the

data-array returned by “fullread-multi' contains the rele/ant name only.

Chapter 10

Other Implementation Issues

10.1 Implementation of Error-handling

Figure 10.1 shows the error-handler with the internal and thexternal error-handle.

internal
error-handle

error-handler

error-handle

|

Figure 10.1: The error-handler

If an error-handler has been started on a node (cf. Section 2.&e link-handler
and the link-manager use theanternal error-handle to report networking errors oc-
curring during their operation. For the storage of errors, therror-handler maintains
a ring bu er which is doubled in size whenever it gets too small.

Except the pony.err.get.nct.id.* ' processes, all other error-handling pro-
cesses (cf. Section 4.1) are implemented as a simple requestfregequence over
the (external) error-handle. The error-handling process nkas a request to the error-
handler, carrying the relevant data from its parameters, andvaits for a reply. During

its main loop, the error-handlerALTs over the internal and the external error-handle.

153

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 154

When a request arrives from one of the error-handling processager the external
error-handle, the error-handler sends a reply to the requesy process. The data
coming with the reply is then returned by the error-handlingprocess to the user-level
code via the relevant parameters. The only error-handling pcess that gets no reply
from the error-handler is the pony.err.shutdown ' process, which just sends a shut-
down signal to the error-handler (see Section 10.5 for detadbout pony's shutdown
mechanism).

The ‘pony.err.get.nct.id.* ' processes are a special case, since they do not
communicate with the error-handler. Instead, they rst checkwhether the channel-
type-end parameter is de ned or not. If the end is unde ned, a error is returned.
Otherwise, a small inline assembler routine determines the CTBointer of the end.
Then an auxiliary C function is called to nd out the NCT-ID stored in the CTB.
If the CTB is not networked, the auxiliary function returns an error, otherwise it
returns the NCT-ID. The “pony.err.get.nct.id.* ' processes terminate after the
auxiliary function has nished, returning the NCT-ID and the result via the relevant
parameters.

When the ID of the current remote node for a given NCT-ID is regested over
the external error-handle, the error-handler contacts th€TB-manager and requests
the CTB-instant-handle for the relevant CTB-handler. If the reply from the CTB-
manager says that the NCT-ID is invalid, the error-handler ndtes the requesting
process about it. Otherwise, the error-handler now requestse¢hD of the current
remote node from the CTB-handler's instant-handler. The rely from the instant-
handler (which may either be the requested node-ID, or a nottation that there is
currently no external session) is then forwarded to the requesg process.

The error-handler associates a unique running number (call¢ige “position) with
each error that gets stored in the buer. This number is not stoed in the array
together with the error; instead, the error-handler keeps twvspecial variables. These
variables store the position of the rst error that is currently stored in the bu er

(called " rst running number’), and the position of the next eror that will happen

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 155

(called "next running number’). When a new error-point is rguested from the error-
handler, the "next running number' will be returned. The eror-handler keeps another
variable, which stores the number gpendingerror-points at the current "next running
number'. Every time an error-point is requested, this numbeis increased.

When an error is reported over the internal error-handle, ta error-handler dis-
cards the error if the bu er is empty and the number of pending error-points is zero.
Otherwise the error, together with the number of pending errepoints?, is stored in
the bu er. Then the "next running number' is increased and thenumber of pending
error-points is set to zero. In this way, the error-handler kows for every error that
is stored in the bu er how many error-points were given to uselevel processes while
the position associated with the error was the “next running nuber'.

When the deletion of an error-point is requested over the exteal error-handle,
the error-handler deletes the error-point as set out in Algathm 10.1.

When the error-handler receives a request for all errors afta given error-point
over the external error-handle, it does a similar check as in g¢drithm 10.1. If the
error-point is at the “pending’' position and the number of peding error-points is
greater than zero, an OK and an empty array are returned, togieer with the un-
changed error-point. If the error-point is out of range, orfithere are no error-points
stored in the bu er at the given position, the requesting process noti ed that the
error-point is invalid.

Otherwise, the error-handler now goes through the bu er, staing with the error
at the position of the given error-point, and assembles an arrayith all errors that
t the criteria which came with the request. Please note that tle assembled array
may be empty if none of the errors that happened after the giweerror-point ts the
criteria. Then the error-point at the given position is deleéd in the same way as in
Algorithm 10.1. This involves deleting errors without an eror-point from the start

of the bu er. When this is done, the number of pending error-pints is increased.

twhich may be zero if there are errors in the bu er already

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 156

Algorithm 10.1: Deleting an error-point

SEQ
We just received a request to delete an error-point
(Cerr.point’ is the error-point to be deleted)

Set ‘rel.err.point' to the index of the error-point in th e buffer
IF

-- Error-point at “pending' position
(err.point = next.running.num) AND (pending.err.points > 0)

SEQ

pending.err.points := pending.err.points - 1
Return OK

-- Error-point out of range
(err.point < first.running.num) OR (err.point >= next.run ning.num)

Return “invalid error-point' error
-- No error-point at given position
err.data.array[rel.err.point][num.err.points] = 0
Return “invalid error-point' error
TRUE
SEQ
-- Delete error-point at given position
err.data.array[rel.err.point][num.err.points] :=
err.data.array[rel.err.point][num.err.points] - 1
IF
Deleted error-point was at start of buffer and
was the only error-point stored at this position
Delete all errors with no error-point from start of buffe r
(afterwards buffer is either empty, or new first element
. of the buffer has a stored 'num.err.points’ > 0)
TRUE
SKIP
Return OK

Finally, the error-handler returns an OK to the requesting pocess, together with the

assembled array, and the current "'next running number' as thepdated error-point.

10.2 Implementation of Message-handling

Figure 10.2 shows the pgny components that are related to message-handling.
If a message-handler is active on a node, themy components use thenternal

message-handl& report status messages to the message-handler. The link-haagrdl

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 157

internal
message-handle

message-
handler

message-—— output

‘ message-handle —
outputter —— error

Figure 10.2: pny components related to message-handling

and the link-manager may report error messages as well. Whiclessages are reported
depends on the message-type given to startup process (cf. Setad3).

As described in Section 4.2, there are di erent message-outpats using various
combinations of output and error channels. The correct messagatputter should
be chosen according to the message-type used. A message-outpwtiér an output
channel should be chosen if and only if status messages are repbibyg the pony
kernel; the same applies to an error channel and error messagesoadingly. Never-
theless, itis possible to use any combination of message-type and message-ougout
If there are mis ts between the channels and the message-typeamings are displayed
by the message-outputter.

When the message-outputter is started, it requests the ID of itswin node and
the message-type from the message-handler. If the message-outgubtas a channel
for a type of message that is not reported by thegmy kernel, it displays a warning.
The same applies if a type of message is reported by theng kernel for which the
message-outputter has no channel. In the latter case, the caponding messages are
discarded by the message-outputter. The own node-ID is displayevhen messages
are output.

Then the message-outputter starts its main loop, which consistsf @an auto-
prompter requesting the next message from the message-handlerhéilever a mes-
sage arrives, it is output to the correct channel (unless it nesdo be discarded; see
above). When the message-outputter receives a shutdown signanh the message-

handler, it leaves its main loop and terminates.

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 158

The message-handler maintains a ring bu er to store messages frahe pony
components until they have been taken by the message-outputte The size of the
bu er is doubled whenever it gets too small. During its main lop, the message-
handler ALTs over the internal and the external message-handle. Each tinaenew
message arrives over the internal message-handle, it is storedhe bu er. When a
shutdown signal arrives over the internal message-handle, theessage-handler sets a
special ag to store this fact.

Requests over the external message-handle are only acceptedthiy message-
handler if the message-outputter has not requested initialisain yet, if there is at
least one message in the bu er, or if a shutdown signal was receiviedm the pony
kernel earlier. If the message-outputter requests initialisetn, the message-handler
replies with the own node-ID and the message-type. If the messamgéputter requests
a message, the message-handler returns either a message from ther biuthe bu er

IS not empty; otherwise it sends a shutdown signal to the messagetjfmutter.

10.3 The Application Name Server

The ANS is not part of the pony library as such, but a stand-aloneoaccamp program.
It displays status and error messages on the screen and allows tlseuto terminate
the program via the keyboard. The ANS for TCP/IP uses Barnes' socke le and
process libraries [Bar00a] for calling various routines thare needed for its function-
ality. When the ANS is started, it rst tries to nd its ANS-con gura tion le (cf.
Section 3.3.3) and to extract the port number from it. If the le is not found or if
it contains no port number, the default ANS port number is used. Ten the ANS
creates a listening socket and starts its main loop. During the am loop, it accepts
incoming connections from master or slave nodes abny applications.

The ANS keeps a bu er of all applications that are currently aae or pending.
A pending application is one where one or more slave nodes haeatacted the ANS

using ‘slave/wait' as their node-type (cf. Section 2.3.2) andre currently waiting for

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 159

the master to contact the ANS. When an application is shut down, th index of the
application in the bu er is put on a free-list so that the index @n be re-used. If the
bu er is full, it gets doubled in size. In order to avoid mix-up between nodes of
old and new applications using the same index, each applicatics assigned a unique
code, which is implemented as a running number. For each apmaition, the ANS
also keeps a count of how many slave nodes have requested the mmastestwork
location so far. This information is needed during the shutdowof applications, cf.
Section 10.5.

When the ANS is contacted by a node, it looks up its database for application
with the application-name that came with the request. If the @plication-name is
new and the node-type is ‘'master' or ‘'master/reset’, the new aligation is added to
the database and the location of the master is stored. Then the ANSrsis a reply
to the master node, containing the application-index and thepplication-code. If
the node-type is “slave', an error is returned because therenie master yet. If the
node-type is “slave/wait’, a new pending application is addeto the database. For
pending applications, the ANS keeps a bu er of slaves that are aantly waiting for
the master.

If an active application with the given application-name aleady exists and the
node-type is ‘master’, an error is returned. If the node-typés "master/reset’, the
existing application is removed from the database and the nevpglication (getting
a new application-code) is stored instead. Then the new masteode is noti ed
about the application-index and the application-code. If he node-type is “slave' or
“slave/wait', the location of the master is returned to the slag node by the ANS.

If a pending application with the given application-name akady exists and the
node-type is ‘master' or ‘master/reset’, the state of the applidion is changed to
‘active' and all waiting slaves are noti ed by the ANS about the dcation of the
newly arrived master. Then the master is noti ed about the apptation-index and

the application-code. If the node-type is “slave’, an errosireturned because there is

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 160

no master yet for the application. If the node-type is “slave/ait', the slave node is
added to the bu er of waiting slaves.

When the ANS gets a shutdown request from the master of an applicafi, this
request will contain the application-index and the applicabn-code. The ANS checks
whether the application-code is correct and sends a reply thhé master node, con-
taining the number of slaves that have requested the locatiorf the master so far.
Then the application is removed from the bu er; the applicaton-index is put on
the free-list. If the application-code is wrong, an error isaturned to the requesting
master node, and the application is not removed from the datase.

During its operation, the ANS displays status messages about incorg requests
and how they are handled. After each request, the current numbef active and
pending applications is displayed. If networking errors ha@en during the handling
of requests, the ANS closes the current socket and displays a warnthgt the state of
the database might be inconsistent. If the listening socket failthe ANS terminates.

The ANS can be shut down by pressing q'. If there are currently agg or pending
applications stored in the ANS, a warning is displayed and the shdéwn must be

con rmed by pressing q' a second time.

10.4 The Startup Mechanism

As for the ANS, KRoC's socket, le and process libraries are also used by theny
library itself for the startup of a pony node. When the startup process (cf. Section 2.3)
is called, it starts a special process whose task it is to connect tile ANS, set up
the link to the master if necessary, and start the link-manager. ice this process is
network-type-speci ¢, it is kept separate from the rest of the strtup mechanism.
The special process for TCP/IP tries to nd the ANS- le and the noce- le, and to
determine the network location of the ANS and of the own node. Tiiis done as set
out in Section 3.3. If the settings are not found, defaults arased where applicable.

If the lookup fails, an error is returned. Otherwise, the spedigprocess now creates

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 161

the listening socket for the node. If this is successful, the ANS isntacted. The
message to the ANS contains the node-type, the application-naraed the location
of the node.

As discussed in Section 10.3, upon success, the ANS will return the apation-
index and the application-code if the node is the master, or ghlocation of the master
if the node is a slave. If the node-type is “slave/wait’, the rdp from the ANS may
tell the slave to wait because there is no master yet. In this caste slave will close
the connection to the ANS and accept a new incoming connectioroin the ANS
| which will arrive as soon as a master for the application has cotacted the ANS.
When the connection from the ANS has been accepted, the slave edd noti ed by
the ANS about the location of the new master. Then the connectiowith the ANS
is closed.

If the node is a slave, it will now connect to the master and noyfthe master
about its own location. The link-manager on the master node aepts the incoming
connection. If the master is in the process of shutting down, it W notify the slave
about it. Otherwise, it checks whether the location sent by theslave is used by
another slave already, in which case an error is returned to theave, so that the
slave's startup would fail. Otherwise, the master noti es the ske about its node-ID
(which is the next free node-ID in the application), and fork o a link-handler for
the new link.

If the reply from the master was that the master is currently shuing down, and
the node-type is “slave’, the slave's startup would fail. If theode-type is “slave/wait’,
the special process will start over and connect to the ANS again | ad (if necessary)
wait for the next master that will start an application of the given name.

If the above sequence of events has been completed successtuyspecial process
forks o the link-manager. The link-manager starts its accefpr sub-process, which
starts accepting incoming connections. Then the link-managéorks o the master-
link-handler. If our node is a slave, the master-link-handlenses the socket which was

just established to the master. If our node is the master, obviouslpo such socket

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 162

exists. Instead, the master-link-handler will be a dummy (cf. $#on 9.1). Then the
link-manager starts its main loop.

If the special process has nished without errors, the startup peess can now
fork o the main kernel. The main kernel then forks o its subcanponents. First
the message-handler is forked o if the startup process is mearnt teturn a message-
handle, then the error-handler is forked o if the startup praess is meant to return
an error-handle. Then the main kernel requests the link-hatel to the master-link-
handler from the link-manager. Now the CTB-manager is forked . On the master
node, the last component to be forked o is the NCT-manager. Thethe main kernel

starts its main loop.

10.5 The Shutdown Mechanism

When pony's shutdown process (cf. Section 3.2) is called, it sends a sthoivn request
to the main kernel via the network-handle. The main kernel ten shuts down all its

internal components in the following order:

CTB-manager and CTB-handlers
link-manager and link-handlers
On the master node: NCT-manager and NCT-handlers

If applicable: error-handler and message-handler

CTB-manager and CTB-handlers

The main kernel rst sends a shutdown signal to the CTB-manager &ithe CTB-
manager-handle. In the CTB-manager, a small sub-process themds internal release
signals to both CTB-claim-handles of all CTB-handlers that ee currently known by

the CTB-manager, in order to release unshared NCT-ends that atecated on our

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 163

node. All those release signals are sent in parallel. While theyeabeing processed,
the CTB-manager continues accepting and handling incomingquests normally.

For the sake of simplicity, release signals to the CTB-handlersasent for all ends,
no matter whether the ends are unshared or shargdand whether they are currently
claimed or not. Ends that are shared, as well as unshared endsathare currently
not on our node, are not in a claimed state in their respective (B-handlers when
the release signals are sent. As discussed in Section 8.1.5, howelies presents no
problem, since CTB-handlers accept release signals for endatthre already released
when the session-state of the CTB-handler is 'no session'. This isetheason for
sending the release signals in parallel. If there is currently session in the CTB-
handler, this means that at least one end is currently claimedThe internal release
signal for a claimed end will be accepted in any case. When theddmas been released,
there is de nitely no more session in the CTB-handler, so the intaal release signal
for the other end will then be accepted as well, even if it is i@ady released.

When all ends have been released, the CTB-manager lls an ayraith the CTB-
pointers of all networked CTBs and shuts down all CTB-handlexon the node. Please
note that the number of CTB-handlers that are on our node now &y be higher than
the number of CTB-handlers whose ends were just internally esdised. The reason
for this is that between the shutdown signal from the main kerdgwhich initiated
the internal releasing of all ends, and the completion of thet@rnal releasing of these
ends, channel-type-end NLCs may still have been arriving in emders on our node.
Although none of these NCT-ends were output to user-level process@ew CTBs
for them may still have been established before the pending CL@gre cancelled
due to the internal releasing of all ends. This was the reason fetill letting the
CTB-manager handle requests as usual | otherwise a deadlock mdyave occurred
between the CTB-manager trying to release an end, the releva@TB-handler trying

to "cancel-encode' a pending outgoing CLC, and the encodezaling with that CLC

2In fact, the release signal during shutdown is the only case where the CTB-claim-handlis used
for shared ends.

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 164

trying to contact the CTB-manager in order to allocate a new NCT-end for a pending
channel-type-end NLC.

Even though there may be new CTB-handlers now, there is no ree® internally
releasetheir ends, since those ends were not internally claimed before | beaae the
relevant channel-type-end NLCs were never output to user-leMprocesses. The CTB-
manager now sends a shutdown signal to all CTB-handlers that acairrently on our
node. When the CTB-handlers are shut down, they shut down all #ir decode- and
encode-handlers, which in turn shut down their respective deders and encoders.
When all this is done, the CTB-manager sends a shutdown con rntian to the main
kernel via the kernel-reply-handle, together with the arra of CTB-pointers. Then

the CTB-manager terminates.

Link-manager and Link-handlers

Now the main kernel sends a shutdown signal to the link-manager.h& link-manager
reacts di erently to the shutdown signal depending whether aunode is the master
or a slave. If our node is a slave, the link-manager will send a sdotvn signal to all

its link-handlers. This is safe to do now, since once the CTB-hdlers have all been
shut down, it is not possible anymore for link-handlers to contd the link-manager

| therefore there is no danger of deadlock here.

When a link-handler on a slave node gets a shutdown signal fromethink-manager,
it checks whether the link still exists. If it does, the link-hander sends a shutdown
message over the link to the remote link-handler. Then it wait$or a shutdown
message from the remote link-handler. When that arrives, thenk-handler closes the
socket, sends a shutdown con rmation to the link-manager ovehe link-manager-

handle, and terminates.

3The only case where link-handlers on slave nodes may contact the link-manager is inaer to
store the network location of a node in the link-manager, cf. Section 9.2.

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 165

When a link-handler on a slave node gets a shutdown message frore temote
link-handler before getting the shutdown signal from the link-manager, it sends a
shutdown message back to the remote link-handler and closes thelsd. Then it
waits for the shutdown signal from the link-manager. When thatrrives, the link-
handler sends a shutdown con rmation to the link-manager ovethe link-manager-
handle, and terminates.

On the master node, this is dierent. The link-manager there des not send
a shutdown signal to its link-handlers, but waits for them to be st down by a
shutdown message from the respective slaves. Therefore, link-tikens on the master
node never initiate the shutdown of a link, but only react to a shtdown message
from the remote link-handler. If this arrives, a shutdown messagis returned to the
remote link-handler and the socket is closed. The shutdown camation is then sent
immediately to the link-manager, and the link-handler is shudown. This means
that the link-manager on the master node can get shutdown comnations from its
link-handlers at any given time, whereas on slave nodes, thekimanager would need
to send the shutdown signal to the link-handlers rst.

The reason for implementing the shutdown in this way is that, apointed out in
Section 3.2, on slave nodes, theopy kernel is meant to terminate immediately when
the pony shutdown process is called, whereas on the master node, tray kernel
continues serving the slaves (which may still be using the NCT-mager and the
NCT-handlers on the master node) until all slaves have been shubwn themselves.

On slave nodes, the link-manager shuts down its acceptor immatily when it
receives the shutdown signal from the main kernel. When the kamanager on a slave
node has received the shutdown con rmations from all its linkhandlers, it sends a
shutdown con rmation to the main kernel via the kernel-replyhandle, and terminates
itself.

When the link-manager on the master node gets the shutdown sigrfeom the
main kernel, it contacts the ANS to inform it about the shutdown & the application.

As soon as the master has noti ed the ANS about the shutdown, no morequests

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 166

from slave nodes will be accepted by the ANS for this applicationrHowever, some
slaves may have got the location of the master from the ANS beforbet ANS was
noti ed about the shutdown, but not connected to the master yet Therefore, when
the ANS gets the shutdown noti cation from the master, it returnsthe number of
slaves that have requested the location of the master so far. TheK-manager on
the master node keeps a count of how many slaves have connected so far. If the

two counts are not equal, the link-manager will not shut downts acceptor until the

remaining slaves have connected to it. When this happens, thegt nodes are noti ed
that the master is in the process of shutting down, and the accegd connections from
the respective slaves are closed immediately.

The link-manager on the master node waits untiboth all remaining slaves have
connected to it (whereupon the acceptor is shut dowrgnd the shutdown con rma-
tions from all link-handlers have arrived. Once both condibns are met, it sends a
shutdown con rmation to the main kernel via the kernel-replyhandle, and terminates

itself.

NCT-manager and NCT-handlers

If our node is the master, the main kernel now sends a shutdown sajiio the NCT-
manager | which we know will not be used anymore since all links® other nodes are
gone. The NCT-manager sends a shutdown signal to all NCT-handlershich will
con rm the shutdown and terminate straight away. Then the NCT-manager con rms

its own shutdown to the main kernel, and terminates itself.

Terminating the Shutdown Process

Now the main kernel sends a reply to the shutdown process, contaigithe array of
CTB-pointers it had received from the CTB-manager earlierThe shutdown process

then calls an auxiliary C function which will shut down all previously networked

CHAPTER 10. OTHER IMPLEMENTATION ISSUES 167

CTBs. This mechanism was described in detail in Section 6.3.3. W&h the auxiliary

function has nished, the shutdown process terminates.

Error-handler and Message-handler

For the main kernel, there is now only one thing left to do, namly notifying the
error-handler and the message-handler about the shutdown | if hey are running
on our node. If the error-handler is running on our node, the ain kernel sends a
shutdown signal to the error-handler via the internal error-Andle. In this case, the
error-handler is responsible for sending the shutdown signal tbé message-handler
via the internal message-handle (if there is a message-handlaraur node) when the
error-handler has nished itself. If there is no error-handieon our node, but there
is a message-handler on our node, the main kernel itself sends #gheitdown signal
to the message-handler via the internal message-handle. Whehthls is done, the
main kernel leaves its main loop and terminates.

The error-handler only terminates after having receivedoth a shutdown signal
via the internal error-handle and one via the external error-handle. When getting
one of the two shutdown signals, the error-handler stores thisdiin a special ag.
After having received the internal shutdown signal, it will stoptaking requests from
the internal error-handle; after having received the exteal shutdown signal, it will
stop taking requests from the external error-handle. As soon alse second shutdown
signal arrives, the error-handler sends a shutdown signal to theessage-handler (if
there is one on our node), and terminates.

When the message-handler gets the shutdown signal via the intainrmessage-
handle, it stores this fact in a special ag. After having receied the shutdown sig-
nal, the message-handler will stop taking requests from the imteal message-handle.
When all remaining messages (including the shutdown signal atehvery end) have

been taken by the message-outputter, the message-handler tamates.

Part 11l

Performance of pony,

Evaluation and Conclusions

This part of the thesis evaluates pny's performance and contains the nal conclu-
sions. Chapter 11 presents a number of tests that were carried diast examine the
performance of the pny environment. Chapter 12 concludes with a discussion of the

work presented in this thesis, along with an outline of possible tiure research.

168

Chapter 11

Performance Evaluation

To examine the performance of the gny environment, we ran a number of tests, the
results of which are presented in this chapter. The performaadests were carried
out jointly with Adam Sampson from the University of Kent and Dyke Stiles from
Utah State University [Uta06].

The author particularly wishes to thank Adam Sampson for implemnting the
‘bmthroughput' benchmark program, as well as themandelbauer demo and the
distributed pony version of the classicabccam commstimébenchmark [SS06]. All
these programs, together with thebmpingpongtime program also presented in this
chapter, are included in the KRC distribution. Thanks also go to Dyke Stiles for

implementing a pny version of his Distributed Robust Annealing package [Sti05].

11.1 Basic Considerations

All tests were run on the TUNA cluster at the University of Kent. This duster
was funded by EPSRC as part of the TUNA project [SWPO05], a joint project of the
University of Kent and other universities. The cluster consists ofBPCs with 3.2 GHz
Intel Pentium IV processors, running Linux 2.6.8, linked by a réable switched gigabit

Ethernet network.

169

CHAPTER 11. PERFORMANCE EVALUATION 170

The test programs, as well as the gy library itself, were compiled using KRC's
highest optimisation options. Some random checks, however, sleairhat the com-
piler optimisation had no measurable e ect on the test results.

For the duration of the tests, no other tasks were performed on &hmachines used.
Memory usage was watched carefully to avoid going into swap. &apony node was
run on a dedicated host, unless stated otherwise (see Section 11.The ANS was
also given a dedicated host. This was done primarily for ease oanagement, since
the ANS is not performance-critical.

All tests (except the annealing tests, which are a special case; seet®dn 11.7)
aim to be “steady-state' measurements. The loops are started anlibaed to run
for at least two seconds before the timer is started, in order tovaid CPU caching
e ects; the performance of the loop is then measured over a padi of ten seconds.

Each measurement was repeated three times (ve times for thenaealing tests)
and the average of the results taken. We have omitted error kafor clarity; the error
was within 1% on all tests.

It is worth noting that, to date, the main concern in the implementation of pony
was its proper function according to the objectives set out irfsection 1.3. Only
little time has been invested in performance optimisation so fa Still, the results of
our tests are very encouraging, and should only improve whewony's performance is
further optimised in the future. We have already built severatlistributed applications

using pony which perform well on PC clusters.

11.2 Communication Time

‘commstimeis a standard benchmark that has traditionally been used withvarious
incarnations of occamand similar CSP-based platforms. Its process layout is shown
in Figure 11.1.

The ‘commstimé benchmark consists of four parallel processes, three of which

are running in a loop. The processes are connected by channasying INTs. The

CHAPTER 11. PERFORMANCE EVALUATION 171

consume

prefix (0)

Figure 11.1: The commstimébenchmark

‘prefix ' process rst outputs a pre-de ned number. Then it inputs incaning INTs
and passes them on. Thedelta ' process inputsINTs and passes them on via two
output channels. The Succ' process inputsINTs and outputs their successors. Fi-
nally, the ‘consumé process inputs thelNTs from the above circuit and acts as a
monitoring process. Since the processes are e ectively only migicommunications,
the cycle rate of the network (i.e. how long it takes for a piecof data to travel around
the loop) can be used to estimate the overhead of a single comneation.!

The pony version of the commstimébenchmark modi es the standard program
so that each of the four processes runs on a separate node. The dads between
processes become NCTs containing a singMT channel. Appendix C compares the
traditional and the distributed implementation of ‘commstiméin order to give a
practical example of how to use gny to make an existing application distributed.

Since pny sendsINTs as single NLCs, the communication time measured is the
time for a basicnetwork communication | which includes not just several occamp
context-switches, but also eight pthreads context-switches, do system calls into the
kernel, and two TCP round-trips across the network.

The standard commstiméwas compiled using the same KBC version and options
as the other test programs, and reported a communication timef 49 ns with CPU
usage at 100%. The gny ‘commstiméreported a communication time of 66 s with
CPU usage on each node at 3% | approximately fteen thousand comunications

per second.

IThere is also a “parallel delta’ version of the original benchmark which is usd to measure process
startup time; the benchmark used here is the “sequential delta' version in which ngrocesses are
created or destroyed while the benchmark is running.

CHAPTER 11. PERFORMANCE EVALUATION 172

These results met our expectations. They are also in line with th#rough-
put measurements below. The measurement in Figure 11.3 gave laaughput of
21.6 KB/s? for a single node running 50 worker processes each outputting ssages
of 1 B size, i.e. about 21.6 thousand messages per second arrivinthea measuring
process. As expected, the fact that 50 workers were running innadlel moderately
increased the communication rate compared to the fteen th@and communications

per second measured in theeommstimébenchmark above.

11.3 Throughput

‘bmthroughput’ is a benchmark program intended to measure the aggregate dat
rate available across a group of networked channels. We willfee to that rate as
“throughput' in the following. The ‘bmthroughput' program is designed to be a
exible tool for throughput measurement, allowing variatilms of several parameters
of the distributed benchmark application.

A collection of worker processes | distributed across a number oflave nodes |
sends MOBILE [|BYTEarrays to a master process (on the master node); the master
measures the rate at which it is receiving data from the colléon of workers. The
number of slave nodes, number of workers per slave node, rangmegsage sizes (xed
or randomly distributed) and transmission rate (in messages per sewl, or simply
‘as fast as possible’) can be varied. In this set of benchmarks, tbede generating
messages is trivial, and there are no othesccamp processes running to compete
with pony for CPU time.

Using 100 KB | a message size typical for applications rendering ®@-time graph-
ics | the saturation point of the network can be reached with relatively few sending
processes. Figure 11.2 shows the throughput available with one 25 slave nodes,

each running two workers; network saturation is just reached &5 slave nodes (i.e.

2All byte pre xes used in this chapter are decimal, e.g. 1 KB = 1000 B.

CHAPTER 11. PERFORMANCE EVALUATION 173

50 workers). The peak at two slave nodes was persistent through aleasurements;

we have no explanation for it at the present stage.

100

80 -

60 -

Throughput [MB/s]

40 iy

20 1

0 I I I I
0 5 10 15 20 2t

Slave nodes

Figure 11.2: Throughput: 100 KB messages, two workers per slave

Figure 11.3 shows the throughput available from one slave nodening 50 work-
ers as the message size is varied between 1 B and 1 MB. Sinaeylike occamp
internally) does approximately the same amount of work per comunication regard-
less of the size of the message, there is an obvious advantage ingikrger messages
if your application is optimised for throughput.

Figure 11.4 shows the throughput available from one slave nodesing 50 KB
messages as the number of workers is varied between 1 and 5@hypses blocking
system calls, so otheobccamp processes can execute whilempy is waiting for net-
work operations to complete; throughput-sensitive applicatns should therefore use
multiple processes per node, or have internal bu ering, to ensaithat the networked

channels always have data available to send.

CHAPTER 11. PERFORMANCE EVALUATION 174

100 T T T T T T T T T T

80 T

60 T

Throughput [MB/s]

20

0 i L M| L L M| L L M| L L M| L L M| L L L
1 10 100 1000 10000 100000 le+0¢

Message size [B]

Figure 11.3: Throughput: Varying message size, one slave with &0rkers

11.4 Network Overhead

An analysis of the results ofbmthroughput’ gives an idea of the network overhead cre-
ated by the pony environment. The throughput measured by the master processly
includes the data actually being sent by the application (thais, the 'MOBILE [IBYTE
arrays); the network overhead due to the pgny and TCP/IP protocols is not included.

It can be estimated by comparing the measurement with the netwk data rate re-
ported by the operating system.

The rightmost data point in gure 11.2 is 99.1 MB/s. At the same pant, the net-
work usage measured (using the Linuwsaidar ' tool) was 104.9 MB/s. The network
overhead was thus approximately 5.8%, or 5.8 KB for every 1B array of data.
Since each 1.5 KB Ethernet frame will contain approximatelys0 B of Ethernet, IP

and TCP headers, the network overhead can be split up into some 4&hich are due

CHAPTER 11. PERFORMANCE EVALUATION 175

100 ———y ———

80 - 1

60 - 1

Throughput [MB/s]

20 b

1 10 100 100(¢
Workers

Figure 11.4: Throughput: 50 KB messages, one slave, varying nuentof workers

to the network protocols in use, and 1.8% due toqmy itself. This shows the low

impact the pony protocol has on the network tra c.

11.5 CPU Overhead

The computational overhead introduced by the pny environment can be evaluated
by measuring the CPU time per ULC. This is the time between stantig to send a
ULC via a networked channel and receiving the acknowledgentdar the ULC's last
CLC (at which time the user-level process is released from thetemded rendezvous),
speci cally excluding the network latency from this measureent. The time measured
re ects the CPU overhead on the sending node.
The "bmpingpongtimé benchmark measures the time needed by the CLCs of a

ULC to travel through the protocol-decoder, into the mny kernel, and then all the

way through the pony kernel until the point where they would have to be output to

CHAPTER 11. PERFORMANCE EVALUATION 176

the network. At this point, nothing is sent to the network, but the acknowledgement
for the relevant CLC is sent to the CTB-handler as if it had just keen received from
the network. The measurement includes the ping-pong timesrfall CLCs of the ULC.
After the last acknowledgement has been returned, the sendingeration nishes as
usual, with the decoder assuming that the remote node has reasivthe data, and
therefore releasing the user-level channel.

‘bmpingpongtime sends regular byte arrays in order to exclude any dynamic mem
ory allocation (for instance of MOBILE [|BYTEarrays) from the gures. Figure 11.5
shows the CPU time per ULC for single byte arrays of varying size. Asxpected, the
CPU time is fairly constant. This is because the gny infrastructure does not copy

the user-level data, but uses its address and size (cf. Chapter 7)

10 T T T T T T T T T T

CPU time per user-lel communication [!s]

0 . L . L . L . L . L . A
1 10 100 1000 10000 100000 le+0¢

Arraysize [B]

Figure 11.5: CPU overhead: Single byte array of varying size

An interesting phenomenon is that sending one byte of regular tdais slower than

sending 10 or 1000. An analysis of the bytecode generated by thempiler shows

CHAPTER 11. PERFORMANCE EVALUATION 177

that KR oC uses the OUTS8instruction for the single byte and OUTfor the rest, so
presumably those have di erent performance characteristics.

Another test measures the CPU time per ULC for sequential protoc®lwith a
varying number of items. In each sequential protocol, all itemxare regular byte
arrays of the same size; we have carried out measurements foragrsizes of 1 B,
1 KB and 1 MB.

Figure 11.6 shows the CPU time per ULC for sequential protocol$ & B arrays.
The jump between the results for one and two items is rather higince the second
item is sent as part of the ‘remaining’ CLCs, whereas for a singtem, there is just
the rst CLC to be sent. The CPU time per ULC then gradually incresses due to
the fact that the individual items of the sequential protoco| except the rst and the
last, are copied internally by the decoder, and then the addss/size pair of thecopy
is passed on (cf. Section 7.7.1); the copying takes more timestmore items there are

in the protocol.

25 T T T T T T T T

CPU time per user-lel communication [!s]

0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 1C

Number of protocol items (1 B anys)

Figure 11.6: CPU overhead: Sequential protocol, 1 B arrays

CHAPTER 11. PERFORMANCE EVALUATION 178

For sequential protocols with two or more items, there are alwa two ping-pongs,
since the rst CLC and the ‘remaining’ CLCs need to be sent, the teer always in
one go. Hence, only the copying of the NLCs of the ‘remaining' Cls causes the
gradual increase, with(n - 2) copy operations for protocols withn items.

Figure 11.7 shows the CPU time per ULC for sequential protocold & B, 1 KB
and 1 MB arrays. For sequential protocols with one and two itemghe CPU time
per ULC is nearly identical for all three array sizes, since no cgipg is involved.
As expected, from three items onwards, the results diverge, laese the aggregate
amount of data that needs to be copied depends on the length thie protocol and

the size of the individual arrays.

10000 ¢ T T

[1B arays —+—
1 KB amys —*—
1 MB arays —*—

1000

100

CPU time per user-lel communication [!s]

103

1 I I I I I I
1 2 3 4 5 6 7 8 9 1C

Number of protocol items

Figure 11.7: CPU overhead: Sequential protocol, several ayrsizes

Particularly notable is the big jump between two and three iems for the 1 MB
arrays. This shows the impact of copying large amounts of data jand the advantage
of not having to copy non-sequential regular data or mobile da, which will be the

bulk of communication in a typical pony application.

CHAPTER 11. PERFORMANCE EVALUATION 179

Nevertheless, network latency always outweighs local copyingherefore, copying
items of a sequential protocol locally and then sending them ia single network
operation is still better than not copying them and sending edcitem over the network

separately.

11.6 Application Scalability

‘mandelbauer is an example of using pny to make an existing application dis-
tributed; in this case, the original program computes a regio of the Mandelbrot
set. The approach taken is ‘farming': the master node generataork requests for
rectangular sections of the region being computed; a numbelr slave nodes read the
requests, do the appropriate computation and send the results ddato the master;
the master then collects and displays the results. For the purpasef this test, the
display has been disabled; the master just measures the rate at alihpixels are being

computed.

master slave slave slave

response

Figure 11.8: The mandelbauer application: Shared mode

The ‘'mandelbauer application can be run in two modes. In shared mode (see
Figure 11.8), there is a single pair of shared networked requ&ssponse channels (in
two separate NCTs) used by all the slaves. In multiplexing mode (seegtre 11.9),
each slave has its own pair of networked request/response chalsr(@ a single NCT),

connected to a handler process on the master node. When a slavstated up, it

CHAPTER 11. PERFORMANCE EVALUATION 180

farm

handler { request/response slave

handler { request/response slave

handler { request/response slave
master

Figure 11.9: The mandelbauer application: Multiplexing mode

sends the server-end of its ‘request/response’ NCT to the master otlee “farm' NCT;
the master will then set up a new handler process for the slave. Theaster uses local
shared channels to distribute work to and collect results fromhe handler processes.
The slaves have small internal bu ers to hold incoming and outging messages.

Figure 11.10 shows the rendering performance afiandelbauer in both modes.
Network saturation is reached at 25 slaves in multiplexing modat which point CPU
utilisation on the slaves in multiplexing mode is approximatly 85%; in shared mode
it is approximately 30%.

The scaling performance in multiplexing mode is signi cantlybetter than in
shared mode. Since shared NCT-ends must be explicitly claimedeovthe network,
in shared mode the master is frequently blocked waiting for onaf the workers to
claim the request channel. Future research will have to looktmways to improve the
mechanism for claiming NCT-ends | which would narrow the gap béween shared

mode and multiplexing mode.

CHAPTER 11. PERFORMANCE EVALUATION 181

3500

T
Ideal peformance

Multiplexing mode —+—
Shaed mode —»—

3000

2500

2000

1500

Conmputation rate [Kpixel/s]

1000

500

5 10 15 20 2t
Slave nodes

Figure 11.10: Scalability of a distributed application

It is usually considered good practice to run network-bound prcesses at a higher
priority than compute-bound processes, in order to reduce latey for network re-
sponses. However, we tried both with and without explicit prioties in this appli-
cation, and there was no measurable di erence | perhaps becae, as there is only
one calculation process running at a time on each slave nodeg tpony processes will

never be blocked for longer than the time it takes to process emnwork request.

11.7 Distributed Robust Annealing Case Study

Simulated annealing [SLGS96, SLG97] is a stochastic optimigat algorithm that is
used to search for minima (or maxima) of complex problems. A clasal example
would be the Travelling Salesman, where the goal is to designettshortest route

that covers all of the salesman's customers. Simulated annedgibegins by randomly

CHAPTER 11. PERFORMANCE EVALUATION 182

creating a solution to the particular problem, and calculatig the “cost' of the con g-
uration. In the Travelling Salesman, the cost would be the lerl of the salesman's
complete closed route.

The algorithm then searches for a better solution by generagnrandom changes
to the original con guration. If the change results in an impovement, it is accepted
and serves as the starting point for the next move. If the changgelds a poorer
solution, it is accepted at a speci ed probability, which deaases over the life of the
algorithm. Thus, eventually only changes which improve the syem are likely to be
accepted. Under the appropriate conditions, this approach Wiead to a result that
is probably very close to the true minimum.

Distributed Robust Annealing [Sti05] is a distributed version ofthe annealing
algorithm. There are one master and several worker processes. Aetbeginning,
the master sends the initial con guration to the workers. The wikers then indepen-
dently do a sequence of standard annealing runs, beginning witkry short runs and
increasing the length by a factor of about 1.2 on each successiva.r At the end of
each run, the result is returned to the master. The master storedl aesults it receives
from the workers in a large database. When a pre-de ned stopmrcondition is met,
each worker terminates independently. The master then seledhe best of all results
that have been returned by the workers.

The particular annealing problem in this exercise is the Quadtic Assignment
Problem (QAP), which deals with the allocation of resources t@onsumers under
certain constraints. This is a classical NP-complete problem. Ehstopping condition
is a minimum allowed rate of improvement of the cost at the endf@ run.

In the tests presented here, we measure the e ective time peeiation’, which is
calculated by dividing the total time that has passed by the toal number of moves
performed by all workers during that time. A move consists of radomly selecting
one parameter of the system, randomly perturbing that paramet, evaluating the
cost of the con guration, then deciding whether to accept thehange based on the

criteria described above.

CHAPTER 11. PERFORMANCE EVALUATION 183

During our tests, the typical number of moves was around one rhdn. Due to the
large number of moves, and the fact that all workers perform #ir runs independently
without having to interact with each other, the cost of compuéation is far more
relevant than the cost of communication. As can be seen below,ighfact had an
impact on the outcome of our tests, which led to some interestingsults that were
not anticipated.

We performed our tests with ve dierent versions of the Distributed Robust

Annealing algorithm:

A non-networked occamp version running as a singleccamp program. This

version did not use ny, and (obviously) ran on a single machine.

A pony version where the master and all workers were separate nodesl all

nodes ran on a single machine.
A distributed pony version where each node ran on its own dedicated machine.
A JCSP.net [WAF02, WV02] version with all nodes running on a singlmachine.

A distributed JCSP.net version.

Figure 11.11 compares the threeccamp versions. The results for the non-pny
version are more or less constant for an increasing number of werk The distributed
pony version is getting faster by a factor roughly proportional & the number of
workers. That is, the e ective time per iteration for four workers is about a quarter
of the time for one worker. These results conform with what wascpected.

Somewhat surprising is the result for the gny version running on a single machine.
It is getting faster as more nodes are added. So, using theny version on a single
machine creates an advantage compared to the noofy version, although the overall
computational capability of the hardware is the same. Furthespot checks with higher

numbers of workers showed that a saturation is reached at abotgn workers; from

CHAPTER 11. PERFORMANCE EVALUATION 184

30 T
Non-pony —+—
pony,single machine —=—
pony,distributed —x—

Effective time per iteration [!s]

Workers

Figure 11.11: Annealing:occamp versions

then onwards, adding further nodes to the gny version on a single machine does not
further decrease the e ective time per iteration.

Communication between pny nodes (even on the same machine) is obviously
slower than betweeroccamp processes in a singleccamp program. But, as discussed
above, for the annealing algorithm computation outweighsoenmunication as the
length of the run increases. The most likely explanation for th@dvantage of the
pony version on a single machine compared to the noromy version are caching
e ects.

In the non-pony version, the entire annealing algorithm runs in a single OBvel
process. Inside aroccamp program, the KRoC scheduler does not do any time-
slicing but schedules the individualoccamp processes according to when/how they
interact. In the pony version, there is OS-level scheduling (i.e. time-slicing)ebveen

the individual nodes (which are all separate OS-level procesye

CHAPTER 11. PERFORMANCE EVALUATION 185

The non-pony program is obviously larger than the individual nodes of ta pony
version. Linux schedules its OS-level processes less frequetitgnh KRoC schedules
its occamp processes. Therefore, the smaller worker nodes of thap version make
fair use of their caches in each time-slice (and pay the cachessiipenalties when
rst scheduled). Within a large KRoC program, the caching behaviour is likely to be
unpredictable.

Figure 11.12 compares thegny and JCSP.net versions on a single machine. Fig-
ure 11.13 compares the distributed gny and JCSP.net versions. In both cases, the
curves of the JCSP.net versions show similar characteristics imsthe pony versions,

with the JCSP.net versions being a bit faster.

pony L T T

24 L JCSP.net—=— i

Effective time per iteration [!s]

12 L

Workers

Figure 11.12: Annealing: Single machine versions

Spot checks with higher numbers of workers showed that at abioten workers,
the JCSP.net single-machine version reaches a saturation sianito the pony single-

machine version. Both versions' results are then within one staadd deviation. The

CHAPTER 11. PERFORMANCE EVALUATION 186

pony ——
JCSP.net—<—

24 |-

Effective time per iteration [!s]

Workers

Figure 11.13: Annealing: Distributed versions

same applies to the distributed versions | with an increasing nunber of workers, the
di erences between pny and JCSP.net are no longer measurable.

What is surprising is the fact that the JCSP.net versions are fast than the
corresponding ny versions. Previous experiences have always shown that JCSP,
being built on Java, was slower tharoccamp. A likely cause of the opposite e ect in
our tests is again the speci c nature of the annealing, where mgputation is far more
relevant than communication.

A separate test, which only involved the mathematical calcuteons relevant to
our annealing problem (manipulation of elements in large nhdces), showed that the
occamp program doing the calculations was slightly faster than the da program
doing the same calculations. The di erence was hardly measutdab however, being
within the standard deviation.

This leaves three possibilities. Either the Java compiler is aitomore optimised

than KRoC in terms of performing the mathematical tasks relevant forur annealing

CHAPTER 11. PERFORMANCE EVALUATION 187

problem, or the speed advantage of the Java version is due to magd caching e ects
(perhaps the JVM is optimised to use the cache more e ectively in KRoC), or, as
our tests suggest, with a large enough number of workers (and siltong enough), the
Java and occamp versions perform nearly identically. Comparing the mathenteal
and caching behaviour of Java an@dccamp remains an interesting aspect for future

research.

Chapter 12

Conclusions and Future Work

12.1 Evaluation of What Has Been Achieved

This thesis has succeeded in developing a uni ed model for int@nd intra-processor
concurrency. The pny environment has become a robust and scalable platform for
the development of distributed applications. The author's aatribution to the project
was the speci cation of the pny system as presented in this thesis, as well as about
90% of the implementation.

pony expandsoccamp's concurrency model into the networked world and achieves
semantic and pragmatic transparency according to our objeggs in Section 1.3.
Semantic transparency has been achieved by consequently eirsyithat the semantic
behaviour of NCTs | which are the core of pony's distribution model | matches
the semantic behaviour of conventional channel-types. Pactilarly the mobility of
NCT-ends allows ny applications to be as exible and dynamic as their traditonal
occamp counterparts. Another important fact is that NCTs may be shared aboth
ends, and the semantics of shared ends, including the mechanism d@iming and
releasing them, is the same as for non-networked channel-tgpe

pony's protocol-conversion allows all commomccamp protocols to be carried
by networked channels. Since the protocol-converters are segte from the main

pony kernel, support for future occamp types and protocols could be added togny

188

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 189

with comparatively low e ort. The internal function of the main pony kernel would
not be a ected, since the ULC/CLC/NLC system would be used for new mtocols
as well. A special case might need to be made for protocols thateanot “plain
data' but constitute a new communication primitive. In the near future, this applies
particularly to mobile barriers, see Section 12.2.2.

Pragmatic transparency has been achieved by a variety of meass. Most impor-
tantly, communication over a channel-type whose ends are ohd same node is done
in the traditional occamp way by only accessing the channel-word. This means that
plain communication does not involve additional overheads performed locally. An-
other aspect of pragmatic transparency is that communicatingLCs between nodes
has been optimised to require as few network-messages as possiiign, the amount
of copying data-items has been kept low. On the sending nodey nopying is neces-
sary at all except for non-mobile data-items in sequential ptocols with more than
two items.

A small extra cost had to be introduced to accommodate the needénetworkable
CTBs. The overhead of the larger CTB memory layout in a pny-enabled KRoC
build only has a minor impact in most applications and con guations. An exception
may be applications with millions of (possibly non-networkedchannel-types. The
small extra runtime cost related to the claiming and releasingfeshared NCT-ends
should also typically present no problem. A small inconveniencd the moment is
the incompatibility of pony-enabled and non-pony-enabledKRoC builds. Possible
ways to overcome this incompatibility are discussed in Sectidi®.3.2. This becomes
particularly relevant in applications like the ones mentioed above, where there may
be a potentially huge number of channel-types that are nevgpoing to be networked
| according to the proposal in Section 12.3.2, the CTBs of thosehannel-types would
not need to contain the ny-speci ¢ overheads.

In the pony kernel, there is a clean separation between the logical fttion and the
networking function. This allows a better abstraction, espeally when it comes to

extending pony in the future. This applies to adding new features (such as pport

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 190

for new protocols) to the “front-end’ of the pny kernel as well as to adding new
network drivers in order to support additional network-types.

Our tests have shown that pny already has acceptable performance for dis-
tributed occamp applications, and that existingoccamp applications can easily be
adapted to take advantage of pny (cf. also Appendix C). Both the networking over-
head and the CPU overhead of gny are very small, and are therefore more than
outweighed by the ease of use due t@mpy's semantic transparency.

The scalability of pony applications is acceptable as well, especially considegin
the fact that very little “tuning' work has been done on pony sdar. We have also
identi ed areas where future work on the pny implementation may improve the
performance of distributed applications. We hope to testamy in a Grid environment
in the future to identify any scaling problems with larger systms.

The handling of pony for the occamp programmer is simple and straightforward.
As far as the basic functionality is concerned, only the startupnd shutdown of ny,
as well as the explicit allocation of NCT-ends, require a speci consideration of pny
by the programmer. This is done through a minimum number of phlic processes
which provide the interface between gny and the user-level code.

Startup and shutdown only need to be done once per node, the > allocation
only once for each (explicitly allocated) NCT-end. Apart fromthis, all interaction
between the user-level code andpy is implicit, which includes the implicit allocation
of NCTs. All runtime operations are handled automatically and tansparently by the
pony kernel.

Error-handling and message-handling are useful "add-ons' toettbasic function-
ality of pony. While the error-handling is not transparent (sinceoccamp lacks an
underlying fault-tolerance mechanism), it is nevertheless aseful means for detect-
ing errors, allowing the programmer to write more robust gny applications. pony's
message-handling is a useful debugging tool, especially whewrames to extending

pony in the future.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 191

The con guration of pony is easy to understand and minimises the complexity of
setting up a distributed application. Most settings can be detenined automatically;
the only setting that is typically required to start up a node isthe location of the
ANS. This simple con guration mechanism allows programmers to nte "plug and
play' pony applications that will work straight away without requiring a complex
setup procedure rst.

Naturally, this thesis could only break the ground for the newancurrency model,
and the potential for further development never ceases. Thellfmving sections give
an overview of what could (and should) be done in the future toufther improve
the pony environment and to keep up with the current developmentaithe occamp

world.

12.2 Adding Support for New/Future ocqafeatures

12.2.1 Supporting Mobile Processes

Mobile processes [BWO04] have been added aacamp recently and are still largely
experimental. Adding support for mobile processes inopy will not require many
changes in the internal structure of the pny environment since they do not introduce
a new communication primitive (unlike channel-types). Whahas to be dealt with are
items inside a mobile process that are carried with it when it moves over a tveorked
channel to another node, such as mobile data and channel-typads. This can be
done by the protocol-converters.

Mobile data-items inside the mobile process require the adagton of their point-
ers on the receiving node. This can be done by the protocolesder on the re-
ceiving node; the internal function of pny would not be aected. Dealing with
channel-type-end variables stored in the workspace of mobpeocesses would involve

a channel-type-end NLC for each of them in the usual way (which ay involve an

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 192

implicit allocation), plus the adaptation of the pointers ly the encoder (as for mobile
data-items).

The code for a mobile process could be stored in a special repayitéor instance
on the master node or in the ANS. If the protocol-encoder on the geiving node
does not yet have the code for an arriving mobile process awdile, it would request
it from the repository. In this way, large code segments wouldndy need to be sent
over the network when needed. In order to avoid naming conis when requesting
the code for a mobile process from the repository, a hash valuauttbbe used, similar
to the type-hash for channel-types. Apart from adding the codeepository, only the

protocol-converters would need to be extended to accommaeanobile processes.

12.2.2 Supporting Mobile Barriers

Mobile barriers [WBO05] are currently being added tooccamp and are still at an
experimental stage. Unlike a mobile process, a mobile barrierasnew communica-
tion/synchronisation primitive. Therefore, support for mobie barriers in pony will
require some additions to the internal layout of the pny infrastructure, such as
“barrier-handlers' on the master node keeping track of whichrqcesses are currently
enrolled on the barrier. The role of such a barrier-handler foa networked barrier

would be similar to that of an NCT-handler for an NCT.

12.2.3 Supporting RMoX

Integrating pony into the RMoX operating system [BJVO03] should be relatively
straightforward. The internal structure of pony does not need to be changed; just
the network-speci c code, i.e. the link-handler, the link-manager and the ANS, would

need to be adapted in order to use the RBK built-in network drivers.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 193

12.2.4 Supporting Bu ered Channels

The proposed BUFFEREEhannels [Wel04a] foroccamp provide the opportunity for
reducing network latency. mny support for BUFFEREDhannels may be used to
reduce the number of network acknowledgements needed whendrg streams of

bu ered data.

12.2.5 Supporting Behaviour Patterns

Within the Concurrency Research Group at the University of Kentthe idea of meta
"behaviour patterns' for channel-types has been discussed. $hepatterns could be
declared in a BNF-style syntax along with the type declaration fothe channel-type
itself and specify valid sequences of communication along thkaonels inside the
channel-type. This notion is similar to Boosten's Formal Comtacts [Boo03] or the
contracts in Microsoft's Singularity project [Mic05].

pony may utilise behaviour patterns to reduce network latencyFor instance, if
a channel-type contains a request and a reply channel that ammmmunicating (by
behaviour pattern) in a ping-pong style, pny could use that information to save
unnecessary network acknowledgements (since each commundacatould be used as
an acknowledgement for the previous one). At the moment thesdeas are purely
theoretical, however. Since addinggy support for ping-pong style communication
would be non-trivial, it makes sense not to do it until theoccamp language itself
provides a suitable syntax for expressing it | particularly so sine the key objective
of pony is transparency, and the usage ofgmy should interfere as little as possible

with the usual occamp way of programming.

12.2.6 Supporting the Propose@ATE HOLEMechanism

Supporting the proposed GATE HOLEmechanism [Sch04, Wel04b] (or similar ap-

proaches) inoccamp could further enhance pny's performance. The GATE HOLE

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 194

mechanism was proposed in order to tackle a drawback arisingritahe new dynamic
features inoccamp. The classical statiooccam xed the design of its process networks
(and the channels between the processes) at compile time. It waways obvious over
which “interface' a process would communicate with its endinment. By introducing
mobile channel-types, we have unfortunately also introducdtie possibility of hidden
communication routes that are not declared in the interfacéi.e. the header) of the
process.

Previously, the ways in which a process interacted with its eimonment (e.g.
through channels and barriers) could be statically and expility listed in the process
header. Introducing mobile channel-types means that the sef possible interactions
for any process can grow at runtime, so that interactions can ka place that were
not declared by its interface. This raises speci cation and segty issues that are
similar to those found in common OO languages (where aliasingaademic and the
opportunities for object interaction exceed those declareoly their public interfaces
[Loc01, Wel00]).

At the Concurrency Research Group at Kent, the following rule have been pro-
posed to ensure that there are no hidden interactions betweenpaocess and its
environment | a property which we call “structural integrity ' | despite the mobility

of channel-types:

De nition:

(@) Channel-type-end parametersnay be quali ed as being GATEor ' HOLE GATE

and HOLEparameters arelive.

(b) All other channel-type-ends aredead (i.e. locally declared channel-type-end-

variables and parameters not quali ed asGATEor "HOLE. !

1This property of channel-type-ends isstatic | each variable is either always GATEor always
"HOLEor alwaysdead.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 195

Usage:
(c) A process may not communicate over a dead channel-typeeen
Assignment/Communication:

(d) "GATEchannel-type-end parameters haveVAL semantics | they may not be

changed inside the process in whose header they are declared.

(e) GATE HOLEand dead channel-type-ends may be freely assigned/commuatied

to each other as long as this does not break Rule (8).
Parameter-Passing:

(f) Arguments for ‘"GATEparameters may only be live variables | unless the pro-
cess is being forked. If the process is being forked, both livededead arguments

are allowed, as long as this does not break Rule (&).

(9) Inside the scope of aCLAIM a claimed shared channel-type-end may be passed
as an argumentonly to an unshared GATEparameter of a process that is not

being forked?

(h) "HOLBEparameters are initially unde ned when a process starts. Argusnts for
"HOLEparameters may be outerHOLEparameters of matching type which must
be currently unde ned, or the keyword HOLE The latter may only be supplied
to forked processes.HOLEparameters have no return value (i.e. for the calling

process they are still unde ned when the called process termies).

21t would, for instance, be possible to assign aSHARED GApErameter to a dead variable, but it
would not be possible to assign an unsharedsATEparameter to another variable because this would
leave the GATEparameter unde ned, which is not allowed. Nothing can be assigned/communicated
to a ‘GATE

3Note that the semantics of passing arguments to parameters of forked processissanyway that
of communication. So, this clause conforms with Rule (e).

4This forces conformity to the existing rule that inside a CLAIM a live parameter may only be
used for communication; it technically becomes unshared and its value frozen. Please mothat the
possibility of passing a claimed shared channel-type-end to an unshared parameter, pided that
the value of that parameter is not changed inside the process, has already been incor@bed in
KRoC (cf. the possibility to use shared handles for calling pny's public processes | they have to
be claimed beforehand as well).

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 196

(i) Arguments for dead parameters may only be dead oHOLEvariables | unless
the process is being forked. If the process is being forke@ATEvariables are

also allowed as arguments, as long as this does not break Rulg (d

The aim of these rules is that processes only interact with theienvironment
through formally declared live parameters. In the case oHOLEparameters, what
they are bound to may change dynamically, but only by explitaction of the processes
themselves (by internally assigning or communicating a newlcquired channel-type-
end to one of its HOLEparameters). But the external shape of a process does not
change | we have structural integrity. There are no undeclaral routes into or out of
the process.

Additional issues arise from forking. It is proposed to restrict fing so that a
process cannot fork o another process without the calling paess being aware of it.
This could be implemented by introducing aFORK%eyword after which a process
would declare all possible processes that it (or any subsequentlglled processes)
might fork o (similarly to exceptions and the “throws' keyword in Java). Since this
might be a rather heavy burden for the programmer, a lighter gproach could be
a marker by which a process may be marked as BORKING PRO@nly "FORKING
PROE would then be allowed to fork o other processes or subsequenitall other
"FORKING PROC

Since with the GATE HOLEapproach, there would be a clear distinction between
‘live' and "dead' channel-type-end variables, i.e. betweemriables that are used for
communication and those that are not, pny could exploit this information by not
setting up the internal pony components for a networked CTB until at least one of
its ends is used for communication. In this way, NCT-ends thatra just “passing
through' a node would not require setting up the internal pny infrastructure, thus

saving resources.

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 197

12.2.7 Supporting New Fault Tolerance Mechanisms

As discussed in Section 4.1.1, the only part opy that is not transparent at the mo-

ment is the error-handling. There have been various proposaio add fault-tolerance
to occamp, for instance Barnes' TRY CATCHapproach in [Bar03]. When such a
fault-tolerance mechanism is added toccamp, pony could use it to improve its own

error-handling in order to make it more transparent to theoccamp programmer.

12.3 Other Things

12.3.1 Adding Support for Networked Plain Channels

Plain network-channels | i.e. the networked version of plain (classicaloccan) chan-
nels | can be implemented as "anonymous' NCTs that contain exaty one channel.
This approach is similar to the implementation of the anonymas SHAREDhannels

mentioned in Section 1.5.5 (discussed in detail in [Bar03]). Efollowing declaration:

NET CHAN INT iw!: -- These network-channel-ends

NET CHAN BOOL br?: -~ must be allocated before

SHARED NET CHAN BOOL sbw!: -~ we can communicate over them!
SHARED NET CHAN INT sir?:

SEQ

Allocate iw!, br?, sbw!, sir?

Use iw!, br?, sbw!, sir?

would have the semantics of:

CHAN TYPE $anon.INT -- Compiler-generated type
MOBILE RECORD
CHAN INT x?: -- Server-end holds reading-end

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 198

CHAN TYPE $anon.BOOL -- Compiler-generated type
MOBILE RECORD
CHAN BOOL x?: -- Server-end holds reading-end

$anon.INT! iwscli:

$anon.BOOL? br$svr:

SHARED $anon.BOOL! sbwscli:

SHARED $anon.INT? sir$svr:

SEQ
Allocate iwcli, brsvr, sbwscli, sir$svr
Use iwscli, brgsvr, sbwscli, sir$svr

resp. iwscli[x], br$svr[x], sbwscli[x], sir$svr[x]

where the server-end of the compiler-generated channel-g/y de nition holds the
reading-end of the channel. Before a process can communicater a network-
channel-end, that end would need to be allocated. This woulde done using al-
location processes similar to those for NCT-ends.

The compiler would replace any occurrences of network-cheail-ends in the user-
level code by the appropriate generated variables. In paratees, network-channel-
ends would be replaced by the generated channel-type-endgebr?’ would be re-
placed by br$svr). When used for communication, they would be replaced by the

actual channel- eld (e.g. iw ! 5" would be replaced byiw$clifx] ! 5).

12.3.2 Adding Support fo OCALHigh Performance Channels

As described in Section 6.1, in a gny-enabled KRoC build, CTBs have a larger
memory footprint than “traditional' CTBs. Furthermore, the special claim/release
mechanism with network-hook, state- eld and state-semaphoreonsumes additional

runtime. Although the extra cost is small and inevitable in orde to provide full

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 199

transparency, there may be situations where the programmer gfit want to elimi-
nate those overheads. This is of course only possible for chantyples that are not
networked and will never become networked in their lifetime

Currently, the programmer only has the choice to use either additional KR oC
build or a pony-enabled one. This means that either networked channelges are
impossible across the entire application or all channel-typese networkable| with
the known overheads. A "'mix and match' solution is not possible &he moment.

This could be achieved by adding an optionalLOCALkeyword to occamp.
Channel-type-end variables could be declaredl OCAL this would restrict them to
be used in a non-networked (‘traditional’) way. Only pairs of LOCALor pairs of
networkable channel-type-ends could be allocated togethelrhe "LOCALones would
be allocated with the traditional CTB layout and without the special claim/release
mechanism. For LOCALchannel-type-ends, it would only be allowed to send them
over channels that are speci cally declared to carryLOCALends, or over channels
inside other LOCALchannel-types. In this way, LOCALand networkable channel-
types would not get mixed up, and accidentally moving aLOCALchannel-type-end
to another node would be impossible (sinceopy's allocation processes would require
non-LOCALchannel-type-ends).

With this approach, it would still be possible to distinguish betveen pny-enabled
and traditional KR oC builds; however, they could be made more compatible than
before. The compiler would need to treat channel-types in pgrams compiled by a
traditional KR oC build as implicitly "LOCALIf a pony-enabled program wanted to
use anoccamp library that was compiled with a traditional KR oC build, it would
simply need to treat all channel-types in the library asLOCAL conforming with the
above rules. Or put another way, the library would need to be udeas if it were a
pony-enabled one where every single channel-type-end was desdl LOCAL

A further enhancement could be a compiler analysis to idemifNCTs whose
ends are declared locally and never leave the node on whicleyrare declared. These

NCT-ends could then be tagged_OCAlby the compiler automatically. Implementing

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 200

such an analysis would be non-trivial, however, and require mplex changes in the

compiler.

12.3.3 Supporting Di erent Architectures

At the moment, pony only runs on Linux/x86 platforms. KRoC/occamp (with its
new dynamic features) is currently being ported to many di eent platforms besides
x86. Supporting di erent architectures in pony would involve adapting the compiler-
speci ¢ code (the built-in compiler support and the low-levetlrivers) and re-compiling
the library.

Ultimately, we want to be able to bridge di erent platforms aaoss the same pny
application. This raises the question of how to cope with di ent endianisms on the
di erent platforms. For this, the p ony infrastructure on each node must be aware of
the endianism of each node to which it is connected. This coultk done by adding
a ag to each network-message that indicates the endianism oféemode from which
the message comes. Alternatively, each node could be noti ed alhdhe endianism
of a remote node by the time a new link to that remote node is edibshed, so that
the “endianism ag' in every single network-message would not Imecessary.

When network-messages are exchanged between nodes with aéir@rendianisms,
the relevant parts of the message must be converted to the endisim of the target
node, which could be done either on the sending or on the redaty node. This
conversion would happen at di erent places in the gny environment. Data-item
NLCs would need to be converted in the protocol-converters. Bconversion of CLC-
descriptors would be done in the decode- and encode-handlefdl. other parts of a
network-message could be converted in the network drivers datly. An alternative
might be to send all network-messages in plain-text XML or a simitgrotocol. From
a performance point of view, this seems hardly viable, howeve

Bridging several platforms across the sameopy application would also a ect a

possible code repository for mobile processes as mentioned intiSec 2.2.1. Rather

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 201

than storing the native code of several platforms for the same fite process, the
code repository could store ETC code [P0o098]. Inside the protdeencoder on the
receiving node, a just-in-time compiler could then compilehe mobile process into

native code of the target platform.

12.3.4 Security and Reliability

An area that has not been explored yet with respect to the gny environment is
security. In order to make mny applicable in wider markets, an encryption model
for pony needs to be developed. A possible approach could be publidiate keys
similar to the ssh model.

There may be elds of application where encryption cannot based, for instance
if a server running in a pny application provides services to the world. In such a
scenario, everyone may start a node that joins the applicatian order to use the ser-
vice provided. This raises the possibility of Denial of Serviagtacks. Future research
may investigate the detection and defense against such attackspony applications,
as well as other well-known security implications that netwixed applications face
today.

In order for pony to become more reliable, an improvement for the ANS could be
to make its state persistent. Currently, if the ANS crashes, all infonation stored in
its database is lost. It would be useful to be able to restart the ANSna restore its

state after a failure happened.

12.3.5 Simplifying the Setup

Although setting up a node is simple and straightforward in pny, there may be
ways to improve it. This concerns for instance the wayagmy is con gured. Possible
improvements could be supporting a search path for the con gation les in an en-

vironment variable, or the possibility to con gure settings drectly via environment

CHAPTER 12. CONCLUSIONS AND FUTURE WORK 202

variables. It would also be interesting to look into ways to nd @ ANS dynam-
ically through a web page. All these things should be alternates to the current
con guration les rather than replacing them.

In certain scenarios, for instance when running aogpy application on a large
cluster, it may be desirable not to have to start each node sepaedy. Future research
might look into possibilities to automate the startup of pny applications by launching
nodes automatically, for instance by using Grid-style cluster anagement.

Another eld to investigate in the future could be support for Zeoconf-style
[ZerO6a, Zer06b] setup of gny applications on local clusters. Similar to Multicast
DNS, a kind of "Multicast ANS' mechanism might be developed to enlEbnodes of
an application to nd each other without the need for an ANS. Forapplications
spread over big or even global networks such as the internet,eiANS would still be
a necessary and sensible means for interconnecting nodes, butlémal clusters, a
Zeroconf-style setup mechanism could further simplify the use tfe pony environ-

ment.

Bibliography

[Bar00a]

[Bar00b]

[Bar03]

[Bar05]

[BDvOO]

Fred Barnes.Socket, File and Process Libraries fooccam Computing
Laboratory, University of Kent at Canterbury, June 2000. Avaihble at:

http://www.cs.kent.ac.uk/people/staff/frmb/document s/ .

F.R.M. Barnes. Blocking System Calls in KRC/Linux. In P.H. Welch
and A.W.P. Bakkers, editors,Communicating Process Architecturesvol-
ume 58 ofConcurrent Systems Engineeringpages 155{178, Amsterdam,
the Netherlands, September 2000. WoTUG, 10S Press. ISBN: 1-58603-
077-9.

Frederick R.M. BarnesDynamics and Pragmatics for High Performance

Concurrency. PhD thesis, University of Kent, June 2003.

F.R.M. Barnes. Interfacing C and occam-pi. In J. Braank, H. Roeb-
bers, J. Sunter, P. Welch, and D. Wood, editorsCommunicating Pro-
cess Architectures 2005volume 63 ofWoTUG-28, Concurrent Systems
Engineering, ISSN 1383-7575ages 249{260, Amsterdam, The Nether-
lands, September 2005. 10S Press. ISBN: 1-58603-561-4.

M. Boosten, R.W. Dobinson, and P.D.V. van der Stok. MESHMESs-
saging and ScHeduling for Fine-Grain Parallel Processing on Cem
modity Platforms. In Proceedings of the 1999 International Confer-

ence on Parallel and Distributed Processing Techniques aAgplications

203

BIBLIOGRAPHY 204

[BJVO3]

[Boo03]

[Bro0O4]

[BWO1]

[BWO02]

(PDPTA'1999), Las Vegas, Nevada, June 1999. CSREA press. ISBN:
1-892512-15-7.

F.R.M. Barnes, C.L. Jacobsen, and B. Vinter. RMX: a Raw Metal oc-

camExperiment. In J.F. Broenink and G.H. Hilderink, editors,Commu-

nicating Process Architectures 2003WoTUG-26, Concurrent Systems
Engineering, ISSN 1383-7575, pages 269{288, Amsterdam, Thdhge-

lands, September 2003. IOS Press. ISBN: 1-58603-381-6.

M. Boosten. Formal Contracts: Enabling Component Coposition.
In J.F. Broenink and G.H. Hilderink, editors, Communicating Process
Architectures 2003 WoTUG-26, Concurrent Systems Engineering, ISSN
1383-7575, pages 185{197, Amsterdam, The Netherlands, Septemb
2003. 10S Press. ISBN: 1-58603-381-6.

N.C.C Brown. C++CSP Networked. In I. East, J. Martin, P. Welch,

D. Duce, and M. Green, editorsCommunicating Process Architectures
2004 volume 62 ofWoTUG-27, Concurrent Systems Engineering, ISSN
1383-7575 pages 185{200, Amsterdam, The Netherlands, September
2004. 10S Press. ISBN: 1-58603-458-8.

F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic Alle@ation and
Zero Aliasing: anoccamExperiment. In Alan Chalmers, Majid Mirme-
hdi, and Henk Muller, editors, Communicating Process Architectures
2001, volume 59 ofConcurrent Systems Engineeringpages 243{264,
Amsterdam, The Netherlands, September 2001. WoTUG, I0S Press.
ISBN: 1-58603-202-X.

F.R.M. Barnes and P.H. Welch. Prioritised Dynamic Commnicat-
ing Processes: Part I. In James Pascoe, Peter Welch, Roger Loader
and Vaidy Sunderam, editors,Communicating Process Architectures

2002 WoTUG-25, Concurrent Systems Engineering, pages 331{3603

BIBLIOGRAPHY 205

Press, Amsterdam, The Netherlands, September 2002. ISBN: 1-58603-
268-2.

[BWO3] N.C.C. Brown and P.H. Welch. An Introduction to the Kent C++CSP
Library. In J.F. Broenink and G.H. Hilderink, editors, Communicat-
ing Process Architectures 2003WoTUG-26, Concurrent Systems Engi-
neering, ISSN 1383-7575, pages 139{156, Amsterdam, The Neldaus,
September 2003. I0OS Press. ISBN: 1-58603-381-6.

[BWO04] F.R.M. Barnes and P.H. Welch. Communicating Mobile Rocesses. In
l. East, J. Martin, P. Welch, D. Duce, and M. Green, editorsCommuni-
cating Process Architectures 2004volume 62 ofWoTUG-27, Concurrent
Systems Engineering, ISSN 1383-75/pages 201{218, Amsterdam, The
Netherlands, September 2004. IOS Press. ISBN: 1-58603-458-8.

[CG89] Nicholas Carriero and David Gelernter. Linda in Contd. Communi-
cations of the ACM 32(4):444{459, April 1989.

[CO03] Vincent Cremet and Martin Odersky. PiLib: A Hosted Languge for Pi-
Calculus Style Concurrency. InDomain-Speci ¢ Program Generation
pages 180{195, 2003.

[FK97] I. Foster and C. Kesselman. Globus: A Metacom-
puting Infrastructure Toolkit. International Journal
of Supercomputer Applications 1997. Available at:

ftp://ftp.globus.org/pub/globus/papers/globus.pdf

[FKNTO2] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The Pskology
of the Grid: An Open Grid Services Architechture for Distributel
Systems Integration. Global Grid Forum, June 2002. Available at:

http://www.globus.org/research/papers/ogsa.pdf

BIBLIOGRAPHY 206

[FKTO1] |. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Interna-
tional Journal of Supercomputer Applications 2001. Available at:

http://www.globus.org/research/papers/anatomy.pdf

[FKTO2] I. Foster, C. Kesselman, and S. Tuecke. What is the Grid? A
Three Point Checklist. GRIDToday, July 2002. Available at:
http://www-fp.mcs.anl.gov/ foster/Articles/WhatlsTheGrid.pdf

[Goo01] I.N. GoodacreoccamNetChans, March 2001. Project report, Comput-

ing Laboratory, University of Kent at Canterbury.

[HilO5] G.H. Hilderink. Exception Handling Mechanism in Commurgating
Threads for Java. In J. Broenink, H. Roebbers, J. Sunter, P. Wel,
and D. Wood, editors,Communicating Process Architectures 20Q5/0l-
ume 63 of WoTUG-28, Concurrent Systems Engineering, ISSN 1383-
7575 pages 317{334, Amsterdam, The Netherlands, September 2005.
IOS Press. ISBN: 1-58603-561-4.

[Hoa85] C.A.R. Hoare Communicating Sequential ProcesseBrentice-Hall, Lon-
don, 1985. ISBN: 0-13-153271-5.

[IBMO3] IBM Corporation. Globus Toolkit 3.0 Quickstart, Redpa-
per. Technical report, IBM Corporation, 2003. Available at:
http://www.redbooks.ibm.com/redpapers/pdfs/redp3697 .pdf .

[Ind04] Indiana University LAM Team. LAM/MPI User's Guide. Tech-
nical report, Indiana University, May 2004. Available at:
http://www.lam-mpi.org/download/files/7.0.6-user.pd f.

[Inm88] Inmos Limited. Transputer Reference Manual Prentice Hall, March

1988. ISBN: 0-13-929001-X.

BIBLIOGRAPHY 207

[INnm93]

[INnm95]

[Loc01]

[MicO5]

[Mil99]

[MM98]

[M0099]

Inmos Limited. The T9000 Transputer Instruction Set Manual SGS-
Thompson Microelectronics, 1993. Document number: 72 TRN 24Q.

Inmos Limited. occam 2.1 Reference Manual. Techaicreport, Inmos

Limited, May 1995. Available at: http://wotug.org/occam/

T.S. Locke. Towards a Viable Alternative to OO { extenahg the oc-
cam'CSP programming model. In Alan Chalmers, Majid Mirmehdi,
and Henk Muller, editors, Communicating Process Architectures 2001
volume 59 ofConcurrent Systems Engineeringpages 329{349, Amster-
dam, The Netherlands, September 2001. WoTUG, I0S Press. ISBN:
1-58603-202-X.

Microsoft Research. An Overview of the Singularity Prect, 2005.
Microsoft Research Technical Report MSR-TR-2005-135. Avallke at:

http://research.microsoft.com/os/singularity/

R. Milner. Communicating and Mobile Systems: the Pi-Calculus
Cambridge University Press, 1999. ISBN-10: 0521658691, ISBN-13:
9780521658690.

Henk L. Muller and David May. A simple protocol to commurticate chan-
nels over channels. IEURO-PAR '98 Parallel Processing, LNCS 1470
pages 591{600, Southampton, UK, September 1998. Springenleg.

J. Moores. CCSP { a Portable CSP-based Run-time Systengport-
ing C and occam In B.M. Cook, editor, Architectures, Languages and
Techniques for Concurrent Systemssolume 57 ofConcurrent Systems
Engineering seriespages 147{168, Amsterdam, The Netherlands, April
1999. WoTUG, IOS Press. ISBN: 90-5199-480-X.

BIBLIOGRAPHY 208

[MPI197]

[MTWO3]

[MWO6]

[OAC* 05]

[Objo3]

[P0096]

[P0098]

MPI Forum. MPI-2: Extensions to the Message-Passing Inte
face. Technical report, MPI Forum, July 1997. Available at:

http://www.mpi-forum.org/docs/mpi-20.ps

M.D. May, P.W. Thompson, and P.H. Welch. Networks, Routers and
Transputers volume 32 of Transputer and occamEngineering Series
IOS Press, 1993.

J.M.R. Martin and P.H. Welch. A Design Strategy for Deadbck-free
Concurrent Systems. InTransputer Communications volume 3 (4),
pages 215{232. Wiley and Sons Ltd., UK, October 1996.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Sephane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Sten-
man, and Matthias Zenger. The Scala Language Speci catione¥sion
1.0. http://scala.epfl.ch/docu/files/ScalaReference.pdf , Oc-
tober 2005.

Object Management Group. The Common Object Requestr8ker: Ar-
chitecture and Speci cation (CORBA). Technical report, Obpct Man-
agement Group, December 1993. Available aftp://ftp.omg.org/

M.D. Poole. Occam for all { two approaches to retarggeng the INMOS
compiler. In Brian O'Neill, editor, Parallel Processing Developments,
Proceedings of WoTUG 19volume 47 ofConcurrent Systems Engineer-
ing, pages 167{178, Amsterdam, The Netherlands, March 1996. World
occam and Transputer User Group, I0OS Press. ISBN: 90-5199-261-0.

M.D. Poole. Extended Transputer Code - a Target-Ingiendent Repre-
sentation of Parallel Programs. In P.H. Welch and A.W.P. Bakkersedi-

tors, Architectures, Languages and Patterns for Parallel and Disbuted

BIBLIOGRAPHY 209

[PTOO]

[PVO02]

[SBWO3]

[Scho1]

[Sch04]

Applications, Proceedings of WoTUG 21volume 52 ofConcurrent Sys-
tems Engineering pages 187{198, Amsterdam, The Netherlands, April
1998. WoTUG, IOS Press. ISBN: 90-5199-391-9.

Benjamin C. Pierce and David N. Turner. Pict: A Progranming Lan-
guage Based on the Pi-Calculus. In G. Plotkin, C. Stirling, an®. Tofte,
editors, Proof, Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, 2000.

K.S. Pedersen and B. Vinter. Java PastSet: A Structured Btributed
Shared Memory System. In James Pascoe, Peter Welch, Roger Lead
and Vaidy Sunderam, editors,Communicating Process Architectures
2002 WoTUG-25, Concurrent Systems Engineering, pages 97{108, 30
Press, Amsterdam, The Netherlands, September 2002. ISBN: 1-58603-
268-2.

M. Schweigler, F.R.M. Barnes, and P.H. Welch. Flexib| Transparent
and Dynamic occam Networking With KR oC.net. In J.F. Broenink
and G.H. Hilderink, editors, Communicating Process Architectures 2003
WoTUG-26, Concurrent Systems Engineering, ISSN 1383-7575, pag
199{224, Amsterdam, The Netherlands, September 2003. I0S Press.
ISBN: 1-58603-381-6.

M. Schweigler. The DistributedoccamProtocol { A New Layer On
Top Of TCP/IP To Serve occamChannels Over The Internet. Mas-
ter's thesis, Computing Laboratory, University of Kent at Canteabury,

September 2001. MSc Dissertation.

M. Schweigler. Adding Mobility to Networked Channelypes. In
|. East, J. Martin, P. Welch, D. Duce, and M. Green, editors,Commu-

nicating Process Architectures 2004WoTUG-27, Concurrent Systems

BIBLIOGRAPHY 210

[SLG97]

[SLGS96]

[SS06]

[Sti05]

[Sun90]

[Sun05]

Engineering, ISSN 1383-7575, pages 107{126, Amsterdam, TheH¢e-
lands, September 2004. I0OS Press. ISBN: 1-58603-458-8.

G.S. Stiles, F.H. Lee, and C. Gyulai. Power-Law Conwgence of
Stochastic Optimization Algorithms. In H.R. Arabnia, editor, Inter-
national Conference on Parallel and Distributed ProcessinTechniques
and Applications (PDPTA'97), pages 1158{1566, Las Vegas, Nevada,
USA, June 1997. CSREA Press. ISBN: 0-9648666-8-4.

G.S. Stiles, F.H. Lee, C. Gyulai, and V. Swaminathan. hE Speedup
of Parallel Randomized Approximation Algorithms. In H.R. Arabna,
editor, International Conference on Parallel and Distributed Procesng
Techniques and Applications (PDPTA'96) pages 1284{1295, Sunnyvale,
California, USA, August 1996. CSREA Press. ISBN: 0-9648666-4-1.

M. Schweigler and A.T. Sampson.opy { The occamp Network En-
vironment. In Peter Welch, Jon Kerridge, and Fred Barnes, etbrs,
Communicating Process Architectures 2006WoTUG-29, Concurrent
Systems Engineering, ISSN 1383-7575, pages 77{108, Amsterdahe
Netherlands, September 2006. IOS Press. ISBN: 1-58603-671-8.

G.S. Stiles. An occam-pi Implementation of a Veri ed Btributed Ro-
bust Annealing Algorithm. In H.R. Arabnia, editor, Proceedings of the
2005 International Conference on Parallel and Distributed Pcessing
Techniques and Applications (PDPTA'2005) volume 1, pages 208{214.
CSREA Press, June 2005.

V.S. Sunderam. PVM: a framework for parallel distribwd computing.
Concurrency, Practice and Experience2(4):315{340, 1990.

Sun Microsystems. Application Isolation
API Speci cation, July 2005. Available at:
http://jcp.org/aboutJava/communityprocess/pr/jsr121 /.

BIBLIOGRAPHY 211

[SWP* 05]

[Uta06]

[Velos]

[Vin05]

[VN9O3]

[VW99]

[WAF02]

S. Stepney, P.H. Welch, F.A.C. Pollack, J.C.P. Woodcock,
S. Schneider, H.E. Treharne, and A.L.C. Cavalcanti. TUNA:
Theory Underpinning Nanotech Assemblers (Feasibility Study),
January 2005. EPSRC grant EP/C516966/1. Available from:

http://www.cs.york.ac.uk/nature/tuna/index.htm

Utah State University. The Utah State University Website, 206. Avail-

able at: http://www.usu.edu/

Kevin Vella. Seamless Parallel Computing on Heterogeneous Networks
of Multiprocessor Workstations PhD thesis, The University of Kent at

Canterbury, Canterbury, Kent. CT2 7NF, December 1998.

B. Vinter. The Architecture of the Minimum intrusion Grid (MiG). In

J. Broenink, H. Roebbers, J. Sunter, P. Welch, and D. Wood, ediits,
Communicating Process Architectures 20Q5volume 63 ofWoTUG-28,
Concurrent Systems Engineering, ISSN 1383-757/5ages 189{201, Am-
sterdam, The Netherlands, September 2005. IOS Press. ISBN: 1-5860
561-4.

John von Neumann. First Draft of a Report on the EDVAC. IEEE
Annals of the History of Computing 15(4):27{75, 1993.

K. Vella and P.H. Welch. CSP/occamon Shared Memory Multiproces-
sor Workstations. In B.M. Cook, editor, Architectures, Languages and
Techniques for Concurrent Systemssolume 57 ofConcurrent Systems
Engineering Seriespages 87{119, Amsterdam, The Netherlands, April
1999. WoTUG, 10S Press. ISBN: 90-5199-480-X.

P.H. Welch, J.R. Aldous, and J. Foster. CSP Networking for
Java (JCSP.net). In P.M.A. Sloot, C.J.K. Tan, J.J. Dongarra,
and A.G. Hoekstra, editors, Computational Science - ICCS 20Q2

BIBLIOGRAPHY 212

[WBO05]

[Wel89]

[Wel99]

[Wel00]

[WelO4a]

[WelO4b]

[Wik06]

volume 2330 of Lecture Notes in Computer Scienge pages 695{
708. Springer-Verlag, April 2002. ISBN: 3-540-43593-X. Seesal
http://www.cs.kent.ac.uk/pubs/2002/1382

P.H. Welch and F.R.M. Barnes. Mobile Barriers for occarpi: Sem-
ntics, Implementation and Application. In J. Broenink, H. Roelbers,
J. Sunter, P. Welch, and D. Wood, editorsCommunicating Process Ar-
chitectures 2005 volume 63 of WoTUG-28, Concurrent Systems Engi-
neering, ISSN 1383-7575ages 289{316, Amsterdam, The Netherlands,
September 2005. 10S Press. ISBN: 1-58603-561-4.

P.H. Welch. Graceful Termination { Graceful Resettig. In Apply-
ing Transputer-Based Parallel Machines, Proceedings of OUR), pages
310{317, Enschede, Netherlands, April 1989. Occam User Group, 10S
Press, Netherlands. ISBN 90 5199 007 3.

P.H. Welch. CSP for Java (JCSP), 1999. Available at:

http://www.cs.kent.ac.uk/projects/ofal/jcsp/

P.H. Welch. Process Oriented Design for Java { Concumey for All. In
PDPTA 2000, volume 1, pages 51{57. CSREA Press, June 2000. ISBN:
1-892512-52-1.

P.H. Welch. Bu ered Channels (andP’RI ALT). Technical Report UKC-
CRG-15-04-2004, Computing Laboratory, University of Kent, @nter-
bury, UK, April 2004.

P.H. Welch. Maintaining Structural Integrity in Dy namic Systems.
Technical Report UKC-CRG-11-03-2004, Computing Laboratgr Uni-
versity of Kent, Canterbury, UK, March 2004.

Wikipedia. The Free Encyclopedia. Nagle's algoritim, 2006. Available
at: http://en.wikipedia.org/wiki/Nagle's _algorithm .

BIBLIOGRAPHY 213

[WMBWO06] P.H. Welch, J. Moores, F.R.M. Barnes, and D.C.

[WV02]

[WWO6]

[Zer06a]

[Zer06b]

Wood. The KRoC Home Page, 2006. Available at:

http://www.cs.kent.ac.uk/projects/ofa/kroc/

P.H. Welch and B. Vinter. Cluster Computing and JCSP Netwoking.
In James Pascoe, Peter Welch, Roger Loader, and Vaidy Sundera
editors, Communicating Process Architectures 20Q2MoTUG-25, Con-
current Systems Engineering, pages 213{232, I0S Press, Amsteamja
The Netherlands, September 2002. ISBN: 1-58603-268-2.

P.H. Welch and D.C. Wood. The Kent Retargetable occam @npiler.

In Brian O'Neill, editor, Parallel Processing Developments, Proceedings
of WoTUG 19, volume 47 ofConcurrent Systems Engineeringpages
143{166, Amsterdam, The Netherlands, March 1996. World occam @n
Transputer User Group, I0OS Press. ISBN: 90-5199-261-0.

Zeroconf. Zero Con guration Networking (Zerocolf 2006. Available

at: http://www.zeroconf.org/

Zeroconf and DNS Extensions. Multicast DNS, 2006. Availke at:

http://www.multicastdns.org/

Part |V

Appendices

The appendices provide supplementary information that is ngart of the main the-
sis. Appendix A contains a list of abbreviations and acronyms used this thesis.
Appendix B gives a comprehensive reference of the public inigéce of the mny envi-
ronment, consisting of the public processes, data-types and coasts. Appendix C
compares the traditional implementation of the commstimébenchmark with a dis-
tributed one using pny, in order to give a practical example of how to useqny
to make an existing application distributed. Finally, Appendk D lists the author's
publications that are related to pony and its development.

214

Appendix A

Abbreviations and Acronyms

The following list contains the ny-speci ¢ abbreviations and acronyms used in this
thesis in alphabetical order.

Abbreviation Meaning Where explained?

or acronym

ANS Application Name Server Section 2.1.3

CLC compiler-level communication | Section 7.2

CTB channel-type-block Section 6.1

NCT network-channel-type Sections 2.1.2 and 6.1
NLC network-level communication | Section 7.2

pony occamp Network Environment | Chapter 1

ULC user-level communication Section 7.2

215

Appendix B
The Public pony Interface

B.1 Public pony Processes

This section contains a reference of all public processes of theny environment,
complete with a description of their parameters. Developerd distributed occamp
applications would call these processes in order to accesgeys functionality.

216

APPENDIX B. THE PUBLIC P ONY INTERFACE 217

B.1.1 Startup Processes

pony.startup.unh

Process Header

PROC pony.startup.unh
(VAL INT net.type,
VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,
RESULT INT own.node.id,
RESULT PONY.NETHANDLE! net.handle,
RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handhkes
well as the ID of the own node.

Parameters
Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,
underscore (or empty string).
app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.
own.node.id | Node-ID of the own node.

net.handle Network-handle (unshared).

result Result. For possible values see Appendix B.2.6.

—

APPENDIX B. THE PUBLIC P ONY INTERFACE 218

pony.startup.snh

Process Header

PROC pony.startup.snh
(VAL INT net.type,
VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,
RESULT INT own.node.id,
RESULT SHARED PONY.NETHANDLE! net.handle,
RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle, \asl|
as the ID of the own node.

Parameters
Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,
underscore (or empty string).
app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.
own.node.id | Node-ID of the own node.

net.handle Network-handle (shared).

result Result. For possible values see Appendix B.2.6.

~—+

APPENDIX B. THE PUBLIC P ONY INTERFACE 219

pony.startup.unh.ueh

Process Header

PROC pony.startup.unh.ueh
(VAL INT net.type,
VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,
RESULT INT own.node.id,
RESULT PONY.NETHANDLE! net.handle,
RESULT PONY.ERRHANDLE! err.handle,
RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handad
an unshared error-handle, as well as the ID of the own node.

Parameters
Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,
underscore (or empty string).
app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.
own.node.id | Node-ID of the own node.

net.handle Network-handle (unshared).

err.handle Error-handle (unshared).

result Result. For possible values see Appendix B.2.6.

—

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.startup.unh.ueh.iep

Process Header

PROC pony.startup.unh.ueh.iep

Description

(VAL INT net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,
RESULT PONY.ERRHANDLE! err.handle,
RESULT INT err.point,

RESULT INT result)

220

Starts the pony environment. On success, returns an unshared network-handkn
unshared error-handle and an initial error-point, as well athe ID of the own node.

Parameters

Parameter Description

net.type Network-type. For possible values see Appendix B.2.3.

ans.name Name of the ANS. Allowed characters: letters, digits, dash, dof
underscore (or empty string).

app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.

own.node.id | Node-ID of the own node.

net.handle Network-handle (unshared).

err.handle Error-handle (unshared).

err.point Initial error-point.

result Result. For possible values see Appendix B.2.6.

’

—

APPENDIX B. THE PUBLIC P ONY INTERFACE 221

pony.startup.unh.seh

Process Header

PROC pony.startup.unh.seh
(VAL INT net.type,
VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,
RESULT INT own.node.id,
RESULT PONY.NETHANDLE! net.handle,
RESULT SHARED PONY.ERRHANDLE! err.handle,
RESULT INT result)

Description

Starts the pony environment. On success, returns an unshared network-handad
a shared error-handle, as well as the ID of the own node.

Parameters
Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,
underscore (or empty string).
app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.
own.node.id | Node-ID of the own node.

net.handle Network-handle (unshared).

err.handle Error-handle (shared).

result Result. For possible values see Appendix B.2.6.

—

APPENDIX B. THE PUBLIC P ONY INTERFACE

222

pony.startup.unh.seh.iep

Process Header

PROC pony.startup.unh.seh.iep

Description

(VAL INT net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT SHARED PONY.ERRHANDLE! err.handle,
RESULT INT err.point,

RESULT INT result)

Starts the pony environment. On success, returns an unshared network-handie
shared error-handle and an initial error-point, as well as # D of the own node.

—

Parameters

Parameter Description

net.type Network-type. For possible values see Appendix B.2.3.

ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,
underscore (or empty string).

app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.

own.node.id | Node-ID of the own node.

net.handle Network-handle (unshared).

err.handle Error-handle (shared).

err.point Initial error-point.

result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC P ONY INTERFACE 223

pony.startup.snh.ueh

Process Header

PROC pony.startup.snh.ueh
(VAL INT net.type,
VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,
RESULT INT own.node.id,
RESULT SHARED PONY.NETHANDLE! net.handle,
RESULT PONY.ERRHANDLE! err.handle,
RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle aad
unshared error-handle, as well as the ID of the own node.

Parameters
Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,
underscore (or empty string).
app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.
own.node.id | Node-ID of the own node.

net.handle Network-handle (shared).

err.handle Error-handle (unshared).

result Result. For possible values see Appendix B.2.6.

—

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.startup.snh.ueh.iep

Process Header

PROC pony.startup.snh.ueh.iep

Description

(VAL INT net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,
RESULT PONY.ERRHANDLE! err.handle,

RESULT INT err.point,

RESULT INT result)

224

Starts the pony environment. On success, returns a shared network-handle, an-
shared error-handle and an initial error-point, as well as #ID of the own node.

Parameters

Parameter Description

net.type Network-type. For possible values see Appendix B.2.3.

ans.name Name of the ANS. Allowed characters: letters, digits, dash, dof
underscore (or empty string).

app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.

own.node.id | Node-ID of the own node.

net.handle Network-handle (shared).

err.handle Error-handle (unshared).

err.point Initial error-point.

result Result. For possible values see Appendix B.2.6.

’

—

APPENDIX B. THE PUBLIC P ONY INTERFACE 225

pony.startup.snh.seh

Process Header

PROC pony.startup.snh.seh
(VAL INT net.type,
VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,
RESULT INT own.node.id,
RESULT SHARED PONY.NETHANDLE! net.handle,
RESULT SHARED PONY.ERRHANDLE! err.handle,
RESULT INT result)

Description

Starts the pony environment. On success, returns a shared network-handle aad
shared error-handle, as well as the ID of the own node.

Parameters
Parameter Description
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,
underscore (or empty string).
app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.
own.node.id | Node-ID of the own node.

net.handle Network-handle (shared).

err.handle Error-handle (shared).

result Result. For possible values see Appendix B.2.6.

—

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.startup.snh.seh.iep

Process Header

PROC pony.startup.snh.seh.iep

Description

(VAL INT net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,
RESULT SHARED PONY.ERRHANDLE! err.handle,
RESULT INT err.point,

RESULT INT result)

226

Starts the pony environment. On success, returns a shared network-handle, aastd
error-handle and an initial error-point, as well as the ID othe own node.

—

Parameters

Parameter Description

net.type Network-type. For possible values see Appendix B.2.3.

ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,
underscore (or empty string).

app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.

own.node.id | Node-ID of the own node.

net.handle Network-handle (shared).

err.handle Error-handle (shared).

err.point Initial error-point.

result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.startup.unh.mh

Process Header

PROC pony.startup.unh.mh

Description

(VAL INT msg.type, net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,
RESULT PONY.MSGHANDLE! msg.handle,
RESULT INT result)

227

Starts the pony environment. On success, returns an unshared network-handad
a message-handle, as well as the ID of the own node.

Parameters

Parameter Description

msg.type Message-type. Determines which messages are output. For poss
values see Appendix B.2.2.

net.type Network-type. For possible values see Appendix B.2.3.

ans.name Name of the ANS. Allowed characters: letters, digits, dash, dof
underscore (or empty string).

app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.

own.node.id | Node-ID of the own node.

net.handle Network-handle (unshared).

msg.handle | Message-handle.

result Result. For possible values see Appendix B.2.6.

ble

’

—

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.startup.snh.mh

Process Header

PROC pony.startup.snh.mh

Description

(VAL INT msg.type, net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,
RESULT PONY.MSGHANDLE! msg.handle,
RESULT INT result)

228

Starts the pony environment. On success, returns a shared network-handle aad
message-handle, as well as the ID of the own node.

Parameters

Parameter Description

msg.type Message-type. Determines which messages are output. For poss
values see Appendix B.2.2.

net.type Network-type. For possible values see Appendix B.2.3.

ans.name Name of the ANS. Allowed characters: letters, digits, dash, dof
underscore (or empty string).

app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.

own.node.id | Node-ID of the own node.

net.handle Network-handle (shared).

msg.handle | Message-handle.

result Result. For possible values see Appendix B.2.6.

ble

’

—

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.startup.unh.ueh.mh

Process Header

PROC pony.startup.unh.ueh.mh

Description

(VAL INT msg.type, net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,
RESULT PONY.ERRHANDLE! err.handle,
RESULT PONY.MSGHANDLE! msg.handle,
RESULT INT result)

229

Starts the pony environment. On success, returns an unshared network-handkn
unshared error-handle and a message-handle, as well as the I@hef own node.

Parameters

Parameter Description

msg.type Message-type. Determines which messages are output. For poss
values see Appendix B.2.2.

net.type Network-type. For possible values see Appendix B.2.3.

ans.name Name of the ANS. Allowed characters: letters, digits, dash, doi
underscore (or empty string).

app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.

own.node.id | Node-ID of the own node.

net.handle Network-handle (unshared).

err.handle Error-handle (unshared).

msg.handle | Message-handle.

result Result. For possible values see Appendix B.2.6.

ble

’

~—+

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.startup.unh.ueh.iep.mh

Process Header

PROC pony.startup.unh.ueh.iep.mh

Description

(VAL INT msg.type, net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,
RESULT PONY.ERRHANDLE! err.handle,
RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,
RESULT INT result)

230

Starts the pony environment. On success, returns an unshared network-handkmn
unshared error-handle, an initial error-point and a messagexhdle, as well as the ID
of the own node.

Parameters

Parameter Description

msg.type Message-type. Determines which messages are output. For poss
values see Appendix B.2.2.

net.type Network-type. For possible values see Appendix B.2.3.

ans.name Name of the ANS. Allowed characters: letters, digits, dash, dof
underscore (or empty string).

app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.

own.node.id | Node-ID of the own node.

net.handle Network-handle (unshared).

err.handle Error-handle (unshared).

err.point Initial error-point.

msg.handle | Message-handle.

result Result. For possible values see Appendix B.2.6.

ble

’

~—+

APPENDIX B. THE PUBLIC P ONY INTERFACE

231

pony.startup.unh.seh.mh

Process Header

PROC pony.startup.unh.seh.mh

Description

(VAL INT msg.type, net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT SHARED PONY.ERRHANDLE! err.handle,
RESULT PONY.MSGHANDLE! msg.handle,
RESULT INT result)

Starts the pony environment. On success, returns an unshared network-handie
shared error-handle and a message-handle, as well as the ID @& twn node.

Parameters

Parameter Description

msg.type Message-type. Determines which messages are output. For possjble
values see Appendix B.2.2.

net.type Network-type. For possible values see Appendix B.2.3.

ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,
underscore (or empty string).

app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.

own.node.id | Node-ID of the own node.

net.handle Network-handle (unshared).

err.handle Error-handle (shared).

msg.handle | Message-handle.

result Result. For possible values see Appendix B.2.6.

~—+

APPENDIX B. THE PUBLIC P ONY INTERFACE

232

pony.startup.unh.seh.iep.mh

Process Header

PROC pony.startup.unh.seh.iep.mh

Description

(VAL INT msg.type, net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT PONY.NETHANDLE! net.handle,

RESULT SHARED PONY.ERRHANDLE! err.handle,
RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,
RESULT INT result)

Starts the pony environment. On success, returns an unshared network-handie
shared error-handle, an initial error-point and a message-hdie, as well as the ID of

the own node.

Parameters

Parameter Description

msg.type Message-type. Determines which messages are output. For possjble
values see Appendix B.2.2.

net.type Network-type. For possible values see Appendix B.2.3.

ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,
underscore (or empty string).

app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, dat,
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.

own.node.id | Node-ID of the own node.

net.handle Network-handle (unshared).

err.handle Error-handle (shared).

err.point Initial error-point.

msg.handle | Message-handle.

result Result. For possible values see Appendix B.2.6.

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.startup.snh.ueh.mh

Process Header

PROC pony.startup.snh.ueh.mh

Description

(VAL INT msg.type, net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,
RESULT PONY.ERRHANDLE! err.handle,

RESULT PONY.MSGHANDLE! msg.handle,
RESULT INT result)

233

Starts the pony environment. On success, returns a shared network-handle, an-
shared error-handle and a message-handle, as well as the ID @& twn node.

Parameters

Parameter Description

msg.type Message-type. Determines which messages are output. For poss
values see Appendix B.2.2.

net.type Network-type. For possible values see Appendix B.2.3.

ans.name Name of the ANS. Allowed characters: letters, digits, dash, doi
underscore (or empty string).

app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.

own.node.id | Node-ID of the own node.

net.handle Network-handle (shared).

err.handle Error-handle (unshared).

msg.handle | Message-handle.

result Result. For possible values see Appendix B.2.6.

’

~—+

ble

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.startup.snh.ueh.iep.mh

Process Header

PROC pony.startup.snh.ueh.iep.mh

Description

(VAL INT msg.type, net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,
RESULT PONY.ERRHANDLE! err.handle,

RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,
RESULT INT result)

234

Starts the pony environment. On success, returns a shared network-handle, an-
shared error-handle, an initial error-point and a message-hdie, as well as the ID of

the own node.

Parameters
Parameter Description
msg.type Message-type. Determines which messages are output. For possjble

net.type
ans.name

app.name
node.name

node.type
own.node.id
net.handle
err.handle
err.point
msg.handle
result

values see Appendix B.2.2.

Network-type. For possible values see Appendix B.2.3.

Name of the ANS. Allowed characters: letters, digits, dash, dof
underscore (or empty string).

Name of the application. Empty string not allowed.

Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

Node-type. For possible values see Appendix B.2.4.

Node-ID of the own node.

Network-handle (shared).

Error-handle (unshared).

Initial error-point.

Message-handle.

Result. For possible values see Appendix B.2.6.

’

~—+

APPENDIX B. THE PUBLIC P ONY INTERFACE

235

pony.startup.snh.seh.mh

Process Header

PROC pony.startup.snh.seh.mh

Description

(VAL INT msg.type, net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,
RESULT SHARED PONY.ERRHANDLE! err.handle,
RESULT PONY.MSGHANDLE! msg.handle,
RESULT INT result)

Starts the pony environment. On success, returns a shared network-handle, aastd
error-handle and a message-handle, as well as the ID of the owsda.

Parameters

Parameter Description

msg.type Message-type. Determines which messages are output. For possjble
values see Appendix B.2.2.

net.type Network-type. For possible values see Appendix B.2.3.

ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,
underscore (or empty string).

app.name Name of the application. Empty string not allowed.

node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).

node.type Node-type. For possible values see Appendix B.2.4.

own.node.id | Node-ID of the own node.

net.handle Network-handle (shared).

err.handle Error-handle (shared).

msg.handle | Message-handle.

result Result. For possible values see Appendix B.2.6.

~—+

APPENDIX B. THE PUBLIC P ONY INTERFACE

236

pony.startup.snh.seh.iep.mh

Process Header

PROC pony.startup.snh.seh.iep.mh

Description

(VAL INT msg.type, net.type,

VAL [IBYTE ans.name, app.name, node.name,
VAL INT node.type,

RESULT INT own.node.id,

RESULT SHARED PONY.NETHANDLE! net.handle,
RESULT SHARED PONY.ERRHANDLE! err.handle,
RESULT INT err.point,

RESULT PONY.MSGHANDLE! msg.handle,
RESULT INT result)

Starts the pony environment. On success, returns a shared network-handle, aastd
error-handle, an initial error-point and a message-handlesavell as the ID of the

own node.
Parameters
Parameter Description
msg.type Message-type. Determines which messages are output. For possjble
values see Appendix B.2.2.
net.type Network-type. For possible values see Appendix B.2.3.
ans.name Name of the ANS. Allowed characters: letters, digits, dash, dot,
underscore (or empty string).
app.name Name of the application. Empty string not allowed.
node.name | Name of the node. Allowed characters: letters, digits, dash, do
underscore (or empty string).
node.type Node-type. For possible values see Appendix B.2.4.
own.node.id | Node-ID of the own node.
net.handle Network-handle (shared).
err.handle Error-handle (shared).
err.point Initial error-point.
msg.handle | Message-handle.
result Result. For possible values see Appendix B.2.6.

~—+

APPENDIX B. THE PUBLIC P ONY INTERFACE 237

B.1.2 Allocation Processes

pony.alloc.uc

Process Header

PROC pony.alloc.uc
(PONY.NETHANDLE! net.handle,
VAL [IBYTE nct.name, VAL INT svr.type,
RESULT MOBILE.CHAN! cli, RESULT INT result)

Description

Allocates an unshared client-end of an NCT. On success, returns takocated NCT-
end.

Parameters

Parameter | Description
net.handle | The network-handle.
nct.name Name of the NCT. Empty string not allowed.

svr.type Share-type of the server-end of the NCT. For possible values see
Appendix B.2.5.
cli The (unshared) client-end variable to be allocated.

result Result. For possible values see Appendix B.2.7.

APPENDIX B. THE PUBLIC P ONY INTERFACE 238

pony.alloc.sc

Process Header

PROC pony.alloc.sc
(PONY.NETHANDLE! net.handle,
VAL [IBYTE nct.name, VAL INT svr.type,
RESULT SHARED MOBILE.CHAN! cli, RESULT INT result)

Description

Allocates a shared client-end of an NCT. On success, returns thecalhted NCT-end.

Parameters

Parameter | Description
net.handle | The network-handle.
nct.name Name of the NCT. Empty string not allowed.

svr.type Share-type of the server-end of the NCT. For possible values see
Appendix B.2.5.
cli The (shared) client-end variable to be allocated.

result Result. For possible values see Appendix B.2.7.

APPENDIX B.

THE PUBLIC P ONY INTERFACE 239

pony.alloc.us

Process Header

PROC pony.alloc.us

(PONY.NETHANDLE! net.handle,
VAL [IBYTE nct.name, VAL INT cli.type,
RESULT MOBILE.CHAN? svr, RESULT INT result)

Description
Allocates an unshared server-end of an NCT. On success, returns thle@ated NCT-
end.
Parameters
Parameter | Description
net.handle | The network-handle.
nct.name Name of the NCT. Empty string not allowed.
cli.type Share-type of the client-end of the NCT. For possible values s¢
Appendix B.2.5.
svr The (unshared) server-end variable to be allocated.
result Result. For possible values see Appendix B.2.7.

D

APPENDIX B. THE PUBLIC P ONY INTERFACE 240

pony.alloc.ss

Process Header

PROC pony.alloc.ss
(PONY.NETHANDLE! net.handle,
VAL [IBYTE nct.name, VAL INT cli.type,
RESULT SHARED MOBILE.CHAN? svr, RESULT INT result)

Description

Allocates a shared server-end of an NCT. On success, returns the edited NCT-end.

Parameters

Parameter | Description
net.handle | The network-handle.
nct.name Name of the NCT. Empty string not allowed.

cli.type Share-type of the client-end of the NCT. For possible values see
Appendix B.2.5.
svr The (shared) server-end variable to be allocated.

result Result. For possible values see Appendix B.2.7.

APPENDIX B. THE PUBLIC P ONY INTERFACE 241

B.1.3 The Shutdown Process
pony.shutdown

Process Header

PROC pony.shutdown (PONY.NETHANDLE! net.handle)

Description

Shuts down the mny environment. Must be called after all activity on (possibly)
networked channel-types has ceased.

Parameters

Parameter | Description
net.handle | The network-handle.

APPENDIX B. THE PUBLIC P ONY INTERFACE 242

B.1.4 Error-handling Processes

pony.err.get.nct.id.uc

Process Header

PROC pony.err.get.nct.id.uc
(MOBILE.CHAN! cli,
RESULT INT nct.id, result)

Description

Returns the NCT-ID for a given channel-type-end if the chanridype is networked
(version for unshared client-ends).

Parameters
Parameter | Description
cli The (unshared) client-end to be checked.
nct.id NCT-ID of the channel-type.

result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC P ONY INTERFACE 243

pony.err.get.nct.id.sc

Process Header

PROC pony.err.get.nct.id.sc
(SHARED MOBILE.CHAN! cli,
RESULT INT nct.id, result)

Description

Returns the NCT-ID for a given channel-type-end if the channdype is networked
(version for shared client-ends).

Parameters
Parameter | Description
cli The (shared) client-end to be checked.
nct.id NCT-ID of the channel-type.

result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC P ONY INTERFACE 244

pony.err.get.nct.id.us

Process Header

PROC pony.err.get.nct.id.us
(MOBILE.CHAN? suvr,
RESULT INT nct.id, result)

Description

Returns the NCT-ID for a given channel-type-end if the channdype is networked
(version for unshared server-ends).

Parameters
Parameter | Description
svr The (unshared) server-end to be checked.
nct.id NCT-ID of the channel-type.

result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC P ONY INTERFACE 245

pony.err.get.nct.id.ss

Process Header

PROC pony.err.get.nct.id.ss
(SHARED MOBILE.CHAN? suvr,
RESULT INT nct.id, result)

Description

Returns the NCT-ID for a given channel-type-end if the channdype is networked
(version for shared server-ends).

Parameters
Parameter | Description
svr The (shared) server-end to be checked.
nct.id NCT-ID of the channel-type.

result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC P ONY INTERFACE 246

pony.err.get.current.remote.node

Process Header

PROC pony.err.get.current.remote.node
(PONY.ERRHANDLE! err.handle,
VAL INT nct.id,
RESULT INT remote.node.id, result)

Description

Returns the ID of the current remote node for a given NCT-ID if he NCT is currently
in a session that involves a remote node.

Parameters
Parameter Description
err.handle The error-handle.
nct.id NCT-ID to be checked.

remote.node.id | ID of current remote node.
result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.err.new.err.point

Process Header

PROC pony.err.new.err.point
(PONY.ERRHANDLE! err.handle,
RESULT INT err.point)

Description

Gets a new error-point from the error-handler.

Parameters

247

Parameter | Description

err.handle | The error-handle.
err.point New error-point.

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.err.delete.err.point

Process Header

PROC pony.err.delete.err.point

Description

(PONY.ERRHANDLE! err.handle,
VAL INT err.point,
RESULT INT result)

Deletes a given error-point.

248

Parameters
Parameter | Description
err.handle | The error-handle.
err.point Error-point to be deleted.
result Result. For possible values see Appendix B.2.8.

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.err.get.errs.after

Process Header

PROC pony.err.get.errs.after

Description

(PONY.ERRHANDLE! err.handle,

INT err.point,

VAL BOOL check.ans, check.master, check.all.nodes,
VAL []JINT nodes.to.check,

RESULT MOBILE [JPONY.ERROR err.array,
RESULT INT result)

249

Returns all errors that occurred after a given error-point Wich meet the given criteria.

Parameters
Parameter Description
err.handle The error-handle.
err.point Error-point.
check.ans "TRUBEN order to return errors that involve the ANS.

check.master

check.all.nodes
nodes.to.check

err.array

result

"TRUEN order to return errors that involve the master node
of the application.

"TRUEN order to return errors that involve any remote node.
Array of node-IDs. Process returns errors that involve any o
the nodes in hodes.to.check .

Array of returned errors. For details about the PONY.ERRO
data-type see Appendix B.2.1.

Result. For possible values see Appendix B.2.8.

=N

R

APPENDIX B. THE PUBLIC P ONY INTERFACE

pony.err.shutdown

Process Header

PROC pony.err.shutdown (PONY.ERRHANDLE! err.handle)

Description

Shuts down the error-handler.

Parameters

250

Parameter | Description

err.handle The error-handle.

APPENDIX B. THE PUBLIC P ONY INTERFACE 251

B.1.5 The Message-outputters
pony.msg.out.uo

Process Header

PROC pony.msg.out.uo
(PONY.MSGHANDLE! msg.handle,
CHAN BYTE out!)

Description

Outputs status messages from thegmy environment (version for an unshared output
channel). To be run in parallel with everything else that invéves the pony environ-
ment.

Parameters

Parameter | Description
msg.handle | The message-handle.
out (Unshared) output channel | typically = stdout .

APPENDIX B. THE PUBLIC P ONY INTERFACE 252

pony.msg.out.so

Process Header

PROC pony.msg.out.so
(PONY.MSGHANDLE! msg.handle,
SHARED CHAN BYTE out!)

Description

Outputs status messages from the gny environment (version for a shared output
channel). To be run in parallel with everything else that invtves the pony environ-
ment.

Parameters

Parameter | Description
msg.handle | The message-handle.
out (Shared) output channel | typically ~ stdout ".

APPENDIX B. THE PUBLIC P ONY INTERFACE 253

pony.msg.out.ue

Process Header

PROC pony.msg.out.ue
(PONY.MSGHANDLE! msg.handle,
CHAN BYTE err!)

Description

Outputs error messages from the gny environment (version for an unshared error
channel). To be run in parallel with everything else that invtves the pony environ-
ment.

Parameters

Parameter | Description
msg.handle | The message-handle.
err (Unshared) error channel | typically ~ stderr .

APPENDIX B. THE PUBLIC P ONY INTERFACE 254

pony.msg.out.se

Process Header

PROC pony.msg.out.se
(PONY.MSGHANDLE! msg.handle,
SHARED CHAN BYTE err!)

Description

Outputs error messages from thegny environment (version for a shared error chan-
nel). To be run in parallel with everything else that involveshe pony environment.

Parameters

Parameter | Description
msg.handle | The message-handle.
err (Shared) error channel | typically ~ stderr .

APPENDIX B. THE PUBLIC P ONY INTERFACE 255

pony.msg.out.uo.ue

Process Header

PROC pony.msg.out.uo.ue
(PONY.MSGHANDLE! msg.handle,
CHAN BYTE out!, err!)

Description

Outputs status and error messages from theopy environment (version for an un-
shared output channel and an unshared error channel). To be run parallel with
everything else that involves the pny environment.

Parameters

Parameter | Description

msg.handle | The message-handle.

out (Unshared) output channel | typically ~ stdout ".
err (Unshared) error channel | typically ~ stderr .

APPENDIX B. THE PUBLIC P ONY INTERFACE 256

pony.msg.out.so.ue

Process Header

PROC pony.msg.out.so.ue
(PONY.MSGHANDLE! msg.handle,
SHARED CHAN BYTE out!, CHAN BYTE err!)

Description

Outputs status and error messages from theopy environment (version for a shared
output channel and an unshared error channel). To be run in pallel with everything
else that involves the pny environment.

Parameters

Parameter | Description

msg.handle | The message-handle.

out (Shared) output channel | typically ~ stdout ".
err (Unshared) error channel | typically ~ stderr .

APPENDIX B. THE PUBLIC P ONY INTERFACE 257

pony.msg.out.uo.se

Process Header

PROC pony.msg.out.uo.se
(PONY.MSGHANDLE! msg.handle,
CHAN BYTE out!, SHARED CHAN BYTE err!)

Description

Outputs status and error messages from theopy environment (version for an un-
shared output channel and a shared error channel). To be run irapllel with every-
thing else that involves the mny environment.

Parameters

Parameter | Description

msg.handle | The message-handle.

out (Unshared) output channel | typically ~ stdout ".
err (Shared) error channel | typically ~ stderr .

APPENDIX B. THE PUBLIC P ONY INTERFACE 258

pony.msg.out.so.se

Process Header

PROC pony.msg.out.so.se
(PONY.MSGHANDLE! msg.handle,
SHARED CHAN BYTE out!, err!)

Description

Outputs status and error messages from theopy environment (version for a shared
output channel and a shared error channel). To be run in paral with everything
else that involves the pny environment.

Parameters

Parameter | Description

msg.handle | The message-handle.

out (Shared) output channel | typically ~ stdout ".
err (Shared) error channel | typically ~ stderr .

APPENDIX B. THE PUBLIC P ONY INTERFACE 259

B.2 Public pony Data-types and Constants

This section contains a reference of all public data-types drtonstants that the pony
environment uses via its public processes.

B.2.1 The Error Record

PONY.ERROR

Declaration

DATA TYPE PONY.ERROR
RECORD
BOOL ans.concerned:
BOOL master.concerned:
BOOL remote.node.concerned:
INT remote.node.id:
INT err.code:

Description

Represents a networking error in pny. The elds contain speci ¢ information about
the error.

Fields

Field Description

ans.concerned "TRUHf the error involves the ANS.

master.concerned "TRUEf the error involves the master node of the ap1
plication.

remote.node.concerned | TRUETf the error involves a remote node.

remote.node.id ID of the remote node involved in the error. Only,
relevant if remote.node.concerned ' is " TRUE

err.code Error-code. Dependent on the network-type. For pos-
sible TCP/IP error-codes see Appendix B.2.9.

APPENDIX B. THE PUBLIC P ONY INTERFACE

B.2.2

Pre x:

Message-types
PONYC.MSGTYPE.*

260

Su X

Value | Description

STATUS 0 Display status messages only.

ERR

Display error messages only.

1
STATUSERR 2 Display status and error messages.

B.2.3

Network-types

Prex: PONYC.NETTYPE.*

Sux | Value | Description

TCPIP 0 TCP/IP. (Currently the only supported network-type.)
B.2.4 Node-types
Pre x: PONYC.NODETYPE.*

Su x Value | Description

MASTER 0 Master node.

MASTERRESET 1 Master node. Reset application if another master is store|

SLAVE

SLAVE

in the ANS already.

2 Slave node. Fails if there is no master stored in the AN
yet.

WAIT 3 Slave node. If there is no master yet, wait until one con
tacts the ANS.

o

B.2.5

Pre x:

Share-types
PONYC.SHARETYPE.*

Su X

Value | Description

UNKNOWN 0 Share-type unknown or not speci ed.
UNSHARED 1 NCT-end is unshared.
SHARED 2 NCT-end is shared.

APPENDIX B. THE PUBLIC P ONY INTERFACE 261

B.2.6 Results for Startup Processes

Non-network-type-speci ¢ Results
Prex: PONYC.RESULT.STARTUP.*

Su X Value | Description

OK 0 Completed successfully.
ILLEGALMSGTYPE-1 lllegal message-type.
ILLEGALNETTYPRE -2 lllegal network-type.

Network-type-speci ¢ Results for TCP/IP
Pre x: PONYC.RESULT.STARTUP.TCPIP.*

Su x Value | Description

ILLEGALANSNAME -11 lllegal ANS-name.

ILLEGALAPPNAME -12 lllegal application-name.

ILLEGALNODENAME -13 | lllegal node-name.

ILLEGALNODETYPE -14 | lllegal node-type.

HOMEDIRNOTINENV -15 | Home directory not specied in environ-
ment.

ANSFILEACCESSERROR | -16 | ANS-le not readable.
ANSFILEINVALIDSETTINGS -17 | ANS- le contains invalid settings.
NODEFILEACCESSERROR -18 Node- le not readable.
NODEFILEINVALIDSETTINGS19 | Node- le contains invalid settings.
IPADDRNOTRESOLVED -20 IP address could not be resolved.

LISTENSOCKFAILURE -21 Network failure when creating listening
socket.

ANSNETFAILURE -22 Network failure when connecting to ANS.

DUPLICATEMASTER -23 Node's location is duplicate of master's lot
cation stored in ANS.

DUPLICATESLAVE -24 | Node's location is duplicate of a pending

slave's location stored in ANS or of another
slave's location stored by master.

OTHERMASTER -25 Master tries to log on to ANS, other master
already there.

NOMASTERYET -26 | Slave tries to log on to ANS, no master
there yet.

MASTERNETFAILURE -27 | Network failure when slave tries to connect
to master.

MASTERSHUTTINGDOWN -28 | Slave tries to log on to master, master is
currently shutting down.

APPENDIX B. THE PUBLIC P ONY INTERFACE 262

B.2.7 Results for Allocation Processes
Pre x: PONYC.RESULT.ALLOC.*

Su x Value | Description
OK 0 Completed successfully.
ILLEGALNCTNAME -1 lllegal NCT-name.

CHANTYPEMISMATCF2 Type mismatch between NCT-end to be allocated
and existing NCT of the same name.
X2XTYPEMISMATCH -3 Mismatch of x2x-type.

X2XCOUNTMISMATCH! Mismatch of x2x-count (i.e. trying to allocate more
than one one2x client-end or more than one x2one
server-end).

APPENDIX B. THE PUBLIC P ONY INTERFACE

B.2.8 Results for Error-handling Processes

Results forpony.err.get.nct.id.*

Pre x: PONYC.RESULT.ERR.GNI.*

Su x

Value | Description

OK

CTENDUNDEFINED
CTENDNOTNETWO

RKED | Channel-type-end not networked.

0 Completed successfully.
-1 Channel-type-end unde ned.

263

Results forpony.err.get.current.remote.node

Pre x: PONYC.RESULT.ERR.GCRN.*

Su x Value | Description

OK 0 Completed successfully.

INVALIDNCTID -1 Invalid NCT-ID.

NOSESSION -2 Currently no session.

SAMENODE -3 Currently both ends on the same node (internal session

N

Results forpony.err.delete.error.point

Pre x: PONYC.RESULT.ERR.DEP.*

Su X

Value | Description

OK

INVALIDERRPOIN

0 Completed successfully.

T -1 Invalid error-point.

Results forpony.err.get.errors.after

Pre x: PONYC.RESULT.ERR.GEA.*

Su X

Value | Description

OK

INVALIDERRPOIN

0 Completed successfully.

IT -1 Invalid error-point.

APPENDIX B. THE PUBLIC P ONY INTERFACE 264

B.2.9 Error-codes for TCP/IP
Pre x: PONYC.ERRCODE.TCPIP.*

READFAILURE
WRITEFAILURE

Su x Value | Description
ACCEPTFAILURE -1 Accepting new connection failed.
CONNECTFAILURE| -2 Connecting failed.

SETNODELAYFAILURE3

-4
5

Setting no-delay option (turning o Nagle algo-
rithm) failed.

Read operation failed.

Write operation failed.

Appendix C

Different = commstimeé
Implementations

C.1 The Traditionatommstimélmplementation

This section contains the traditional, non-distributed, impgementation of the classical
occam commstimébenchmark.

PROC commstime (CHAN BYTE key?, scrl, err!)
BOOL use.seq.delta:
INT num.loops:
SEQ
Find out whether to use the sequential or the parallel del ta
Find out the number of loops
-- Channels between the processes
CHAN INT a, b, c, d:
-- Run sub-processes in parallel
PAR
prefix (0, b?, al)
IF
use.seq.delta
-- Sequential delta
seqg.delta (a?, c!, d)
TRUE
-- Parallel delta
delta (a?, c!, d)
succ (c?, b
-- Monitoring process
consume (num.loops, d?, scr!)

265

APPENDIX C. DIFFERENT = COMMSTIMEPLEMENTATIONS 266

C.2 The Distributeccommstimélmplementation

This section contains the distributed implementation of thecommstimébenchmark.
There are four di erent nodes, each of which is running one ohé sub-processes. A
complete distributed tcommstiméapplication consists of all four nodes.

C.2.1 The Channel-type Declaration

-- Channel-type with one INT channel
CHAN TYPE INT.CT
MOBILE RECORD
CHAN INT chan?:

C.2.2 The prefix ' Node

PROC commstime.prefix (CHAN BYTE key?, scr!, err!)
-- Network-handle
PONY.NETHANDLE! net.handle:
-- NCT-end variables
INT.CT? b.svr:
INT.CT! a.cli:
-- Other variables
INT own.node.id, result:
SEQ
-- Start pony
pony.startup.unh (PONYC.NETTYPE.TCPIP, "™, "commstime",
", PONYC.NODETYPE.SLAVEWAIT,
own.node.id, net.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-- Allocate NCT-ends
pony.alloc.us (net.handle, "b", PONYC.SHARETYPE.UNSHARED,
b.svr, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
pony.alloc.uc (net.handle, "a", PONYC.SHARETYPE.UNSHARED,
a.cli, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-- Start sub-process
prefix (0, b.svr[chan], a.clijchan])
-- No shutdown of pony here
-- because the sub-process that was started is running infin itely

APPENDIX C. DIFFERENT = COMMSTIMEPLEMENTATIONS

C.2.3 The delta ' Node

PROC commstime.delta (CHAN BYTE key?, scr!, err!)
-- Network-handle
PONY.NETHANDLE! net.handle:
-- NCT-end variables
INT.CT? a.svr:
INT.CT! c.cli, d.cli
-- Other variables
BOOL use.seq.delta:
INT own.node.id, result:

SEQ
Find out whether to use the sequential or the parallel del
-- Start pony
pony.startup.unh (PONYC.NETTYPE.TCPIP, "™, "commstime",

" PONYC.NODETYPE.SLAVEWAIT,
own.node.id, net.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-- Allocate NCT-ends
pony.alloc.us (net.handle, "a", PONYC.SHARETYPE.UNSHARED,
a.svr, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
pony.alloc.uc (net.handle, "c", PONYC.SHARETYPE.UNSHARED,
c.cli, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
pony.alloc.uc (net.handle, "d", PONYC.SHARETYPE.UNSHARED,
d.cli, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-- Start sub-process
IF
use.seq.delta
-- Sequential delta
seq.delta (a.svr[chan], c.cliichan], d.cliichan])
TRUE
-- Parallel delta
delta (a.svr[chan], c.cliichan], d.clichan])
-- No shutdown of pony here
-- because the sub-process that was started is running infin

ta

itely

267

APPENDIX C. DIFFERENT = COMMSTIMEPLEMENTATIONS 268

C.2.4 The succ' Node

PROC commstime.succ (CHAN BYTE key?, scr!, err!)
-- Network-handle
PONY.NETHANDLE! net.handle:
-- NCT-end variables
INT.CT? c.svr:
INT.CT! b.cli
-- Other variables
INT own.node.id, result:
SEQ
-- Start pony
pony.startup.unh (PONYC.NETTYPE.TCPIP, ", "commstime",
"™, PONYC.NODETYPE.SLAVEWAIT,
own.node.id, net.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-- Allocate NCT-ends
pony.alloc.us (net.handle, "c", PONYC.SHARETYPE.UNSHARED,
c.svr, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
pony.alloc.uc (net.handle, "b", PONYC.SHARETYPE.UNSHARED,
b.cli, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-- Start sub-process
succ (c.svr[chan], b.clijchan])
-- No shutdown of pony here
-- because the sub-process that was started is running infin itely

APPENDIX C. DIFFERENT = COMMSTIMEPLEMENTATIONS 269

C.2.5 The consuméNode

PROC commstime.consume (CHAN BYTE key?, scr!, err!)
-- Network-handle
PONY.NETHANDLE! net.handle:
-- NCT-end variable
INT.CT? d.svr:
-- Other variables
INT num.loops, own.node.id, result:
SEQ
Find out the number of loops
-- Start pony
pony.startup.unh (PONYC.NETTYPE.TCPIP, ", "commstime",
"™, PONYC.NODETYPE.MASTERRESET,
own.node.id, net.handle, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-- Allocate NCT-end
pony.alloc.us (net.handle, "d", PONYC.SHARETYPE.UNSHARED,
d.svr, result)
ASSERT (result = PONYC.RESULT.STARTUP.OK)
-- Start sub-process (monitoring process)
consume (num.loops, d.svr[chan], scr!)
-- No shutdown of pony here
-- because the sub-process that was started is running infin itely

Appendix D

Own Publications

The following list contains the author's publications that ae related to pony and its
development:

M. Schweigler. The Distributed occamProtocol { A New Layer On Top Of
TCP/IP To Serve occamChannels Over The Internet. Master's thesis, Com-
puting Laboratory, University of Kent at Canterbury, September 2001. MSc
Dissertation.

M. Schweigler, F.R.M. Barnes, and P.H. Welch. Flexible, Transgrent and Dy-
namic occamNetworking With KR oC.net. In J.F. Broenink and G.H. Hilderink,
editors, Communicating Process Architectures 20Q3WoTUG-26, Concurrent
Systems Engineering, ISSN 1383-7575, pages 199{224, AmsterdBhe Nether-
lands, September 2003. 10S Press. ISBN: 1-58603-381-6.

M. Schweigler. Adding Mobility to Networked Channel-Types. Inl. East,
J. Martin, P. Welch, D. Duce, and M. Green, editors,Communicating Pro-
cess Architectures 2004WoTUG-27, Concurrent Systems Engineering, ISSN
1383-7575, pages 107{126, Amsterdam, The Netherlands, Septen®004. I0OS
Press. ISBN: 1-58603-458-8.

M. Schweigler and A.T. Sampson. gy { The occamp Network Environment.

In Peter Welch, Jon Kerridge, and Fred Barnes, editor&Communicating Process
Architectures 2006 WoTUG-29, Concurrent Systems Engineering, ISSN 1383-
7575, pages 77{108, Amsterdam, The Netherlands, September 20@BS Press.
ISBN: 1-58603-671-8.

All publications are available on-line at:

http://www.informatico.de/publications/

270

	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Dedication

